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1. Executive Summary

1. 1 Survey of effort
This document summarizes effort conducted under the contract F49620-92-C-0006,
"Development of Combined Asymptotic and Numerical Procedures for Trarnsonic and
Hypersonic Flows." In the hypersonic portion of the effort, stability and transition,
unsteady aerodynamic characteristics and stability, strong inviscid/viscous interactions
and potential application of instabilities to scramjet combustors were emphasized. Major
aspects of the work included a study of three-dimensional disturbances in hypersonic
boundary layers. These are particularly important to scramjet inlet design. We have
investigated low frequency instabilities of viscous hypersonic flow over a flat plate using
triple-deck methods. Our ¢igensolutions indicate the existence of an upstream
propagating stable mode which is the unsteady counterpart of the steady two-dimensional
Neiland-Brown-Stewartson solutions. We have also discovered a downstream-
propagating unstable mode. This leads to a three-dimensional instability and is controlled
moderately supersonic flow physics. Calculations of growth rates and analysis of the
forced problem for the experimentally significant time-harmonic vibrator show that at
sufficiently low frequencies, the downstream far field transverse projection consists of
Gaussian lobes symmetrically disp!aced about the source axis. For frequencies exceeding
a critical value, only one lobe occurs. The width of this lobe contracts, in contrast to the
expansion of conventional wakes. For wavelengths of the order of the boundary layer
thickness and phase speeds less than unity, we have discovered new waveguide
reflectional instability mechanisms that can be important for strong, moderate and weak
interaction between the shock and boundary layers. These results can be readily extended
to three-dimensional flows. Our asymptotic analyses show that to first order in the
displacement thickness, the upper boundary layer edge behaves as a solid wall that
reflects boundary-layer disturbances. This is a viscous generalization of energy trapping
instability mechanisms discussed by the Principal Investigator in an inviscid context in
(CI]. These compete with other more well known instability modes that produce
premature transition and are therefore of importance to hypersonic design and propulsion-
airframe integration. In addition to this boundary layer "lower" wave guide, and "upper"
one exists between the shock and the sonic line. At mode synchronism points between
upper and lower wave guides, singular growth spikes occur that invalidate the modal
decomposition used in state-of-the-art linear stability/transition prediction theories/codes.
The waveguide concepts have been studied In connection with control of transition
by absorbing walls and demonstrated reduction of amplification with Increased wall
absorption. From the stability asymptotics, practical transition delay concepts have
been identified using conventional thermal protection materials having
ultrasonicadly selective properties. For thin shock layers, we have extended steady
Newtonian asymptotic theory to the unsteady case. We have used the theory to
demonstrate the existence of a new finite-amplitude Inflectional Instability that may
be useful to promote pre.mixing and enhanced burning efficiency for scramJet
combustors. The unsteady Newtonian model is useful in other contexts such as
hypersonic ueroelasticity and flutter. As another application of our hypersonic
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theories, similitudes have been used to collapse re-entry cone transition data to
piovide an efficient prediction tool for the scientist, engineer and designer. In the
transonic regime, we have developed the basis for wind tunnel wall interference
predictions for slcnder and not-so-slender bodies in wind tunnels. The singular
pcrturbation theory is interacting with experiments that we are conducting in the Russian
TsAGI T-128 wind tunnel leading to the generalization of our Transonic Area Rule for
Wind Tunnel Wall Interference (TARWI) to test articles of length comparable to the wall
height. The TsAGI tests have validated our matched asymptotics derivation of the
TARWL The TARWI reduces the three-dimensional wall interference correction
problem to one in two-dimensions. This will provide test engineers a basis for
estimation of transonic blockage corrections and optimization of model size for
maximum unit Reynolds number and minimum wall interference. Also to be described in
what follows are other theories for lift interfcrence in porous wind tunnels as well as
corrections for non-circular walls that we have derived in the effort. To our knowledge,
this is the first time such corrtctions have been embedded in systematic asymptotic
approximation procedures.

1.2 Personnel aeaoclated with research effort

* Dr. Norman D. Malmuth

a Professor Julian D. Cole

0 Dr. Alexander V. Fedorov

a Dr. Andrd lhokhlov

* Professor Vladimir Ya Neiland

* Dr. Vera M. Neyland
* I afcssor Oleg Ryzhov

1.3 Cumulativ list of publications assocltd with efort

CI.Malmuth, N.D. "Stability of the inviscid shock layer in strong intcrnction flow over a
hypersonic flat plate," in Instabilities and Turbulence in Engineering Flows, eds. D.E.
Ashpis, T.B. Oatski and R. Hirsh. Kiuwer Academic Publishers, 1993.

C2.Malmuth, N.D., Jafroudi, H., Wu, .C.C, McLachlan, R. and Cole, J.D. "Asymptotic
methods applied to trunsonic wall interference," AIAA J. 31 5, pp. 911-918, May
1993.
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C3.Malmuth, N. "'Unsteady hypersonic thin shock layers and flow stability," invited
paper at Wright Patterson Hypersonics Meeting, Wright Patterson AFB OH, May 17-
19, 1993 also invited paper International Workshop on Modeling of Aerodynamic
Flows, Hotel Amber Baltic, Miedzyzdroje, Poland, July 12-14, 1993 in Advances in
analytical Methods in Modeling Aerodynamic Flows, edited by J.D.A. Walker, M.
Barnett and F.T. Smith. AIAA, 1994.

C4.Fedorov A. and N. Malmuth. "High Mach number similarity in the prediction of
boundary layer transition on circular cones," AIAA J., 33 8, August 1995, 1523.
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C6. Malmuth, N.D.and Cole, J.D. "Wind tunnel wall interference involving slender wings
and non-circular walls," I" Theoretical Fluid Dynamics Meeting. New Orleans, LA,
Junc, 1996.

C7.Khokhlov, A.P. and Malmuth, N.D. "Low Frequency Instability of Hypersonic
Interactive Boundary Layers on a Cooled Surface," submired to the Journal of Fluid
Mechanics, 1996.

CS.Malmuth, N.D., Crites, R., Everhart, J. and Sickles, W., "Transonic wind tunnel wall
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2. Mechanism of Hypersonic Flow Stabilization by a Semi-
Transparent Wall

2.1 Introduction

The ability to predict and control the location of boundary layer trazisition is of critical
importance in the design and optimization. of aerospace vehicles [1]. Transition causes
significant increases in heat transfer and skin friction. This leads to dinmnished vehicle
performance, primarily because of the additional weight of thermal protection Aystern
(UPS).

If external disturbances are small and the TPS roughness is negligible, then the transition
process is due to amplification of unstable modes in the boundary layer [1], (2]. In this
case, stability theory and experiment form a foundation for the prediction and control of
transition [3], (4], [5]. Several different instability mechanisms may be responsible for
transition on the hypersonic vehicle surface, namely

1. the first and second modes which are dominant in 2-D or quasi 2-D boundary layers on
a flat plate, axisymmetric bodies, wings, etc.

2. Gortler vortices which can play a major role on concave surfaces.
3. cross flow instability which can be dominant in 3-D boundary layers on the leading

edge of a swept wing, axisymmetric bodies at the angle of attack, etc.

Our analysis addresses the mechanism in Item (1). Its relation to other types of instability
will be discussed at the end of this chapter.

The first mode is an extension to high speeds of the Tollmien-Schlichting wave,. They
represent viscous instability at low Mach numbers. However the inviscid nature of the
first mode begins to dominate when the Mach number increases, since the compressible
boundary layer profiles contain a gealized inflection point [3]. This mode may be
stabilized by wall cooling, suction and favorable pressure gradient.

The second mode is the result of an inviscid instablity present due to a region of
supersonic mean flow relative to the disturbance phase velocity. It belongs to the family
of trapped acoustic modes. For an insulated surface, these higher modes appear for Mach
numbers M > 2.2. However, it is not until the Mach number is of the order of 4 or
greater that the second mode is at low enough frequency to have experimental
consequences. Once the .econd mode sets in, it becomes the dominant in.tability since ics
growth rate tends to exceed that of the first mode. For insulated surfaces, this occurs for
M >4. For cooled surfaces, the second mode can dominate at even lower Mach

numbers. In contrast to the first mode, the higher subsonic modes are destabilized by
cooling. The existence of the second modes was established by the experiments of

2-1
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mode wavelengths tend to be approximately twice the boundary layer thickness, and the
second mode phase velocities tend to be approximately equal to the edge velocity of mean
flow.

The second mode induces pressure dLsturbances of very high frequency. For example, the
most amplified waves observed in the experiment of Stetson ef aL [8] at Mach 8
correspond to a frequency of about 100 kHz. TPS porous surfaces can absorb these high
frequency fluctuations. It is assumed that the absorption can cause stabilization of the
second and higher modes by this energy extraction mechanism. This assumption has
been examined in a theoretical study that is summarized in what follows. The eigenvalue
problem for inviscid disturbances in a supersonic boundary layer is formulated in Section
2.2. The WKB method is used to specify the boundary condition on the semi-transparent
wall for the acoustic normal modes of high frequency including the second mode. In
Section 2.3, the eigenvalue problem is solved numerically and it is shown that absorption
stabilizes the second mode. A discussion of the future effort concludes this chapter.

2.2 Elgenvalue problem for Inviscld disturbances

A supersonic boundary-layer flow over a flat plate or sharp cone schematically shown in
Fig. I is considered. The coordinates X, y are made nondimensionless using the

boundary layer displacement thickness 4*.In the locally parallel approximation, the
mean flow is characterized by the profile of X -component velocity U(y) and
temperature T(y) nondimensionalized using their corresponding reference quantities U,

and T, at the upper boundary layer edge. The inviscid stability equations are obtained
from the linearized, parallel flow, viscous equations for a perfect gas with constant
specific heat by setting all viscous and heat-conduction terms equal to zero [II]. Since
the second, third and higher modes have maximum growth rate in the two.dimensional
caset, we consider 2-D disturbances in normal-mode form as

[ p,,jr(xyt) = [U, V. p,er(y)exp[i(C-C -)] s(1)

where U and V are the velocity components in the X and y directions, • is the

pressure normalized by the dynamic pressure, pU• , u is the temperature, a is the

wavenumber, and (0 is frequency.

"This work and a portion of that described in the other chapters was partially funded by other
sources in addition to the contract.
t This is also termed the most dangerous case.

2-2
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y

Usonic line: -c- a(y,)

Fig.~~~~~~~~~~~ 
usi A o si mo ei asu e s ncb u d r la e ons m tr n arena ll.

= " a (U-c) -)

,"c -

I ~where c =0)J/ a is the phase speed, and prime denotes the derivative with respect to y.
The boundary conditions for Eqs. (2) are

v(O)f= A top(0) (3)

Sp( -C) v + (4)

Equation (3) is a general form (Darcy's Law) of the inviscid boundary condition on
porous or compliant walls. The coefficient A is a complex quantity which depends on
properties of the wall material, mean flow characteristics on the wall surface, and flow
perturbation parameters such as a wave frequency and wavelength. Note that the
boundary condition (4) requires the normal mode to vanish outside the boundary layer.
The eigenvalue problem (2)-(4) provides the dispersion relation F(a,a)=0. For
temporal stability, the wavenumber a is real, and wc(a) is the complex eigenvalue. If
Im(ea) > 0, then the disturbance is unstable.

The system of equations (2) can be reduced to one equation for the pressure amplitude

2-3
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To

p, 2v L) P' + •P =°

with the following boundary conditions

p'(O) = A - p(O) (6)
T(O)

p(oa)=0 (7)

According to the asymptotic analysis [12] characteristics of the second, third and higher
modes can be obtained by the WKB method. Without going into details, we briefly
describe the results of this analysis. For a subsonic disturbance with phase speed

SII
M Al

the boundary layer behaves as an acoustic waveguide schematically shown in Fig. 1. In
the waveguide region between the wall and the sonic line:
y= y. ,U(y,) = Re(c) -a(y 0), the pressure amplitude p(y) oscillates in they direction.
Here the real part of the function A(y) is large and positive, and hence the solution of Eq.
(5) can be expressed in the following WKB form

p(y)- (y)exp-i A + A,(y)exp f 0(ey +O(e) (9)

U-C -1/4 M2(U- c),
PI,.2 (Y) -Con"L, Tq T

where C = I / max(ý) is a small parameter. The first and second terms respectively
represent incident and reflected acoustic waves to the wall. Near the sonic line, the
acoustic ray turns around as schematically shown in Fig. 1. In the upper region y > y. ,

the real part of A(y) is negative and the pressure amplitude decays exponentially. For the
neutral modes, the dispersion relation obtained by the WKB method has the following
form for the case of a non-transparent wall (A =0)

24
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M2(aU-0)2 -a 2dy=-÷r.n (10)
0 T 4

The solution of Eq. ( 10), (0,(a), corresponds to the second mode for n - 0, to the

third mode at n 1 etc.

To obtain the explicit form of the coefficient A on a semi-transparent wall, we use the
WKB approximation (9). The reflection coefficient T is defined as

A2 (0)

If T 1, then disturbances are completely reflected by the wall. If T < 1, then some
portion of the disturbance energy is absorbed by the wall material. Differentiating the
expression (9) we obtain in the first order approximation

p'(0) = -iA(0)- 1[A (0) - 2 (0)] (12)

Substituting (12) into the boundary condition (6) and using Eqs. (9), (11), we get

1-r"
p'(O) = -iA(O)p(O). 1- (13)

From Eqs. (6), (13) we obtain the explicit form for the absorption coefficient

,4 T(O)_• V1-•"
A=--- Mr(o- I- (14)

2.3 Reauits and discusalon

The eigenvalue problem (2)-(4) is solved by numerical integration using the method of
Mack [11]. The absorption coefficient A is specified by the expression (14). The
integration starts at the upper freestream and continues to the wall along an indented
contour in the complex plane. The contour lies below the critical point y,:U(y,) = c.
The eigenvalue w(a) is found by the iterative Newton method.
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In Fig. 2, the second-mode growth rate Imr(co) is shown as a function of the wavenumber
a. at various values of the reflection coefficient T. Calculations were performed for the
flat-plate boundary layer on a cool wall with a temperature ratio typical of a hypersonic
vehicle surface. Here, 7, is the surface temperature, and T, is the temperature
ratio T; / T, - 0.2 on an adiabatic wall. The freestream parameters have the following
values: Mach number M = 6, specific heat ratio 7, = 1.4, and Prandtl number Pr = 0.72.
It is seen that the semi-transparent wall reduces the growth rate by the factor of 4 at the
reflection coefficient -r = 0.6. A similar stabilization effect has been obtained for other
Mach numbers, and wall temperatures. Since the physics of the third and higher modes is
similar to that of the second mode, it is assumed that the absorption of acoustic energy
can cause similar stabilization of these higher modes.

K myftý.Vf

/ ,,b~ anpwu
OmO

Fig. 2 Effect of the wall reflection coefficient 'r on the second mode growth rate
Im(co) for hypersonic boundary layer at M =6, T, I T, = 0.1986, Pr = 0.72,
and L =1.4.

2.4 Conclusions

I. According to inviscid stability theory, the absorption of acoustic energy by a semi-
transparent wall can essentially stabilize the second mode of a hypersonic boundary
layer. This stabilization may lead to delay of transition on hypersonic vehicle surfaces.

2. Since frequency of pressure disturbances incident on the wall by the second mode are
very high (of the order of 100 kHz), TPS porous materials used on hypersonic vehicle

2-6
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surfaces can be semi-transparent with respect to these disturbances. It is this property
that provides an opportunity to use absorption to maintain or increase the laminar flow
run.

Since the boundary layer stabilization is due to the absorption of disturbance energy by
the wall, we believe that a similar effect may occur for other high-frequency instabilities
such as unsteady cross flow vortices. A semi-transparent wall may also affect transition
past TPS roughness elements. It is recommended that these assumptions be verified by
wind tunnel experiments using models with porous surfaces.

In our analysis, we have used a simple model for the boundary condition on a semi-
transparent wall. This model permits rough estimates of the absorption effect and
formulations for its experimental verification. For reliable quantitative results, more
comprehensive models of the absorption mechanism as well as detailed experimental
studies are required. In order to demonstrate the effect of transition delay on a semi-
transparent surface and apply it to hypersonic vehicle design, the following effort should
be performed:

* Test current TPS materials and obtain their transparency characteristics in a frequency
band relevant to hypersonic instability

* Demonstrate the effect of surface transparency on transition by experiment on models

of a simple shape (such as a flat plate or sharp cone) in hypersonic wind tunnels

* If the demonstration is successful:

- Develop theoretical models accounting for viscous effects as well as physics of
interaction between the flow disturbance and the TPS material microstructure.

- Conduct detailed experiments in hypersonic wind tunnels.
- Perform flight testing.
- Develop new TPS materials providing maximum stabilization of hypersonic

boundary layer and transition delay.
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3. Reflectional Instability of a Hypersonic Boundary Layer

3.1 Introduction

The hypersonic speed range contains some of the most important problems in boundary
layer transition. At high Mach numbers, early transition causes temperatures high enough
to destroy air vehicle surfaces. Uncertainty in the transition locus leads to diminished
performance, primarily because of the additional weight of the thermal protection system.
This has stimulated considerable experimental and theoretical studies. The transition
problem is an initial boundary value problem which requires the identification of the
freestream disturbance field, understanding of the laminar flow receptivity to external
disturbances including surface irregularities, as well as linear and nonlinear amplification
of unstable disturbances [1). Current knowledge is inadequate to solve and apply the
initial value problem to design, even at low speeds. However, it has been found that
transition can be correlated with linear stability theory if the external-disturbances are
relatively small. This motivates development of hypersonic flow stability theory.

Hypersonic instability is more complicated than for moderate speeds. In addition to
Tollmien-Schlichting waves, cross flow and GOrder vortices, the following special
observations apply at high Mach numbers:

* In the region of the boundary layer that is supersonic relative to the phase velocity,
Mack [2] showed that multiple solutions of the inviscid stability equations occur.
These additional solutions are called higher modes. Physically they represent acoustic
modes which propagate in a "waveguidc" located between the wall and the sonic line.
The first mode of this family, which is called the second mode, is the most unstable.
Its wavelength is of the order of boundary layer thickness.

* Fedorov and Khokhlov (3] demonstrated that the second mode instability is related to
synchronization between the first and second modes. Near the synchronism point,
where frequencies and phase speeds of both modes coincide, the eigenvalues split into
two branches. In the vicinity of branch points the dispersion relation is singular,
causing a strong exchange between modes due to nonparallellism. This implies that a
multi-mode approach is required for transition prediction rather than the conventional
single mode method.

SIf the shock wave is close to the surface, which is relevant to the windward side of re-
entry vehicle at the high angle of attack, a new clasn of unstable modes occurs due to
reflection of disturbances by the shock. Qualitative asymptotic analyses of Fedorov
and Gushchin [4], (5] showed that, in addition to the lower waveguide of the boundary
layer, there is an upper waveguide located between the shock wave and the sonic line.
At certain conditions acoustic waves of the lower waveguide are in resonance with
those of the upper waveguide and have identical phase speeds. The synchronization
between modes causes a new type of instability.
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In the hypersonic limit, the inflectional instability is related to a thin transitional layer
located near the upper boundary layer edge. This inviscid instahility is called the
vorticity mode. It has been studied by Blackaby, Cowley and Hall [6], Smith and
Brown (7], Grubin and Trigub [8] using asymptotic methods. They analyzed stability
of the hypersonic flow over a flat plate for weak and strong viscous-inviscid
interaction. It has been found that the vorticity mode weakly disturbs the flow outside
the transitional layer which separates a hot flow of the boundary layer from a cool
inviscid flow. The phase speed of the vorticity mode tends to unity with increasing
Mach number. Its wavelength is much less than the boundary layer.thickness.

e Malmuth (9] studied disturbance flowfield in a thin shock layer between the shock
wave and the upper boundary layer edge. He examined the strong interaction regime
on a flat plate at the Newtonian limit when the specific heat ratio y -- 1. His studies
show that disturbances of longitudinal scale of the order of the length of the strong
interaction region can strongly amplify in a thin shock layer. This new instability does
not relate to the normal-mode decomposition normally used in stability theory. It was
revealed only by solving the complete initial boundary value problem for strongly
nonparallel flow.

a Hypersonic flow past a blunt body generates a strong curved shock near the nose. This
causes an entropy layer in the inviscid region between the shock and the boundary
layer. As the shock wave approaches the limit of a sharp cone solution, the entropy
layer thickness decreases and eventually it is swallowed by the boundary layer. The
entropy layer can be unstable due to presence of the inflection point (51, [10].
Reshotko and Khan [10] found that within the swallowing region, the boundary layer
stability is affected by the nonuniform flow near the boundary layer edge. The
interplay between the entropy modes and the boundary modes may stxongly affect their
amplification.

Coexistence of several instabilities of essentially different scale make it difficult to
predict transition from a universal stability code. Computations of the hypersonic mean
flow and its stability from codes developed for moderate Mach number flows are very
time-consuming. Computational time and intensity grows dramatically with increasing
Mach number because of the strong non-uniformity of hypersonic mean flow profiles and
the high sensitivity of the related eigenvalue problem to its first and second derivatives
(1]. Solution procedures based on combined asymptotics and numerics deal effectively
with this difficulty since they systematically guide accurate resolution of the high
gradient regions in a robust way. This has stimulated the research described here.

Asymptotic models have been developed to treat the short-scale vorticity mode of the
transitional layer in 16] - [8], and large-scale disturbances in (9] of the inviscid shock
layer. Both instabilities convect with a phase speed close to the freestream velocity. The
intermediate case in which the disturbance scale is of the order of boundary layer
thickness and its phase speed is less than the freestream speed has not been studied by
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asymptotic methods. This gap is targeted in the analysis that follows. In Section 3.2, the
composite system of stability equations for a strong interaction hypersonic boundary layer
is derived. The disturbance field in the inviscid shock layer is treated in Section 3.3. In
Section 3.4, matching between the boundary layer and shock layer is used to establish
boundary conditions at the upper boundary layer edge. The weak interaction case is
considered in Section 3.5. Section 3.6 generalizes consideration of the eigenvalue
problem to 3-D mean flows and fluctuations. In Section 3.7, a self-similar solution for
steady strong interaction boundary-layer flow is obtained. These mean flow profiles are
used for stability computations in Section.3.8.

3.2 Stability equations In the strong Interaction boundary layer

Consider the boundary layer on a flat plate in hypersonic flow of a perfect gas (see Fig. 1)
with speed U_, temperature 7-, and density p-. Introduce nondimensional coordinates
and time as

(x,y)=(x',y')l",-'1( IU-). (I)

where a* is of the order of the boundary layer thickness. The pressure p', temperature,

density and the velocity components u',v" are nondimensionalized as

pT( p (2)

Besides the fast variable x. a slow variable x, corresponding to the longitudinal scal3" V
(see Fig. I) is introduced-, where

x, =8.x,8~..(3) 2"" (3)

Consider the following hypersonic limit corresponding to the strong interaction betwten
Inviscid flow and boundary layer (see for example Bush [11])

8..-+0, M -+ *-,8+' U, -,(7- 1),I= O0), (4)

where 7' is the specific heat ratio. In this case, the shock-layer thickness 8, is of the

order of the boundary layer thickness 8.
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shock wiave ys

L* x•

Fig. I Hypersonic strong interaction flow over a flat plate.

The mean flow and its unsteady perturbations are represented asymptotically as

A(X, Y~t = 6[o•)+e (,•,~)

t(X.,yIo = (Y - O)M [T, (X,, y) + C .T(X'X,, Y, ]+..
/x~yat) = U[,(x,,y) + e. u(x,x,,y,) + ...
,(x,-y,t) = J.'V, ( x. y) + .pV( ,x,,y,t)+.

/y=, +C =[( -I)M ( ,,y)+e dT

AtyT(i, = A.

In (5),e is a small parameter characterizing the disturbance amplitude, A = •' Io is the
normalized viscosity and the temperature-viscosity dependence is approximated by the
power law with the exponent n. With the exception of the vertical velocity v, these
expansions resemble those of Bush [11I for steady flow. Since the disturbance scale is of
the order of boundary layer thickness, the pressure perturbation is not constant across the
layer and induces the vertical velocity perturbation v = 0(I).

Substitution of (5) into Navier-Stokes equations and linearization gives a linear system.
In particular, the continuity equation yields

+ A + U. P-1."+,,
. & 0 -, +
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From the x-momentum equation

A au, + !u,+1 (

jGI +4.R)+ (&2).

They -momentum equation gives

0 4 . 00 (8)
jG 2 ÷ ÷0(82).

From the energy equation

T-U +p u.?!i+ V, d + 4(U ?Z~v,?) (9)

AY &
R.Ir !(Iudy)+RG3 +, ( $2) .

In (9), the similarity parameter R is

R =*I" -, 1 ' (10)

The quantities G1, G2 , and G3 are viscous dissipation terms that can be neglected
everywhere in the boundary layer. Viscous terms proportional to the highest y-derivative
are included in (7) and (9), since they are dominant in viscous sublayers as will be shown
below. Terms proportions1 to 8 describe nonparallc effects m.sociated with downstream
boundary layer growth. The small parameter 6 can be expressed as (see Bush [ I I)

1 4r Re Re.- = (I I)

3-5



SC71062.FTR

From (10) and (11)

Substitution of (11) into (12) gives 8 = I/ R and the result that the similarity parameter
R -4 - for the strong interaction case.

For stability considerations, the disturbance characteristics are represented in the normal
mode form

q(x,x ,yt) [qo(xj, y)+8.q6(xi,y)+...]ex4[ ja(x)dx1 - i] (13) r"

Modes with phase speed c = w/cr satisfying the condition Re(c) < 1 will be considered.

If c-+41, the disturbance is concentrated in the transitional layer located near the
boundary layer edge. This case has been studied in [6] - [8]. Substitution of (13) into (6) -
(9) gives the following system of stability equations to the first order approximation with
respect toi

X ap,
i(al,,- 6 + Pv +, ' V-=o (14)

yduo

Ip. (aU, - 0)))vo + - (17)

Since the mean-flow pressure is constant across the boundary 'ayer, it is convenient to
normalize the preumre to P, so that the equation of state can be expressed as

Tip, =L (18)

Using the notationsSVo Pa. T

we get the following system of stability equations in the form convenient for numerical
integration
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Lf + (20)

e'+i=" (2t)

~~=i!--(u, -cv (22

(23)

where prime denotes the y-derivative. This system is a hypersonic analog of the Dunn-
Lin system for the supersonic boundary layer. Derivation of (20)-(23) is based on an
asymptotic analysis similar to that conducted by Cheng [12], and Alekeev (13] for
moderate speeds. The asymptotic structure of disturbances across the boundary layer is
schematically shown in Fig. 2 for 0 < Re(c) < 1.

bqwud Aock layer

bm -dary laer edge Y'.-

inwvieddzone 2
N C &J.fical t r

7,) bivirid zone I

Fig. 2 Asymptodic structure of the disturbance field.

The following observations are relevant:

I. In Zones I and 2 with the thickness 0(1), viscous terms are negligible, and the system
(20)-(23) is reduced to the inviscid stability equations.

2. In a viscous sublayer of thickness 8 = (aR)", viscous terms from (20) and (23) wre
of the order of inviscid terms. Here, the solution is expanded in a power series of bmaHl
parneter4.
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3. In the critical layer of thickness 8 = (aRf)"', viscous terms are also of the order of
inviscid terms. This layer is located near the critical point y,:U(y,) " c. Here, the
solution is expanded in a power series of 6 "

4. In the inviscid shock layer located outside the boundary layer, viscous terms are
negligible and the system (14)-(17) is reduced to the inviscid stability equations.

Instead of solving stability equations in each sublayer and performing matching between
asymptotic solutions, we can solve the system (20)-(23) numerically keeping the viscous
terms with the highest y-derivative throughout the entire region of integration. This
allows us to obtain a composite solution which is uniformly valid in all decks. A similar
approach has been applied by Mack [2], Gaponov and Maslov [14], Tumin and Fedorov
[151, and others to stability analysis of supersonic flows. Note that the system (20)-(23)
can be directly derived from the Dunn-Lin system by applying the hypersonic limit and
using the asymptotics (5).

Summarizing, we conclude that the disturbance structure and stability equations in the
hypersonic boundary layer are qualitatively similar to those for supersonic flow.
However, the behavior of the disturbance amplitude near the upper boundary layer edge
and within the inviscid shock layer is essentially different from the moderate speed case.
The mean flow temperature tends to zero at the upper boundary layer edge, which
separates the hot flow in the boundary layer from the cool flow in the shock layer. As
will be shown below, the large difference between temperatures of these flows strongly
affects boundary conditions for the disturbance amplitude.

3.3 Disturbances In the Inviacid shock layer

Consider the inviscid flow between the shock wave and the upper boundary layer edge

(see Fig. 1). We specify nondimensional variables of inviscid flow as

(x,,y,) =(x,y)/ V,t, =t"/(LV U) (24)

p"-p (u,v)
=-'.2 ' p=' = V, ) u" 1 (25)

The shock-wave shape* is defined as

y,, =8 -(xJ,td), =O(1) (26)

Subscript s is used interchangeably herein to denote shock quantity or (steady) mean flow. This distinction
should be obviated by the uscage context.

3-8

S , ,:I [i t!-



SC71062.FTR

The inviscid flow in the shock layer is described by the system of equations

+ + 0- (27)

24U ,+ )+ -o0 (28)

PL+4 X +ýL ,+ -(29)

=0 (30)

P (31)

where S is the entropy function.

The boundary conditions at the shock wave are

24(x 1y,,,Ir) = 1-- 862 (Dj) 1  (32)

Y+1

p(xI,, , ISP 1) = 7 y +..... i 2 (34
P(I-Y, ))M7+- (35)

D, T,•' + TI (36)

We assume that the shock wave has the shape

i = go(xl) + C6 g, (x,t), (37)

where x -- x, S, and t ri t/6 are fast variables of the disturbance flowfield. Using these,

the boundary conditions (32)-(35) are written as

i= 1 - +82 [go,,' + 2ega,, Dg, +... (38

2 
2+

= g,,, (39)
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+ 2 [2 go., +2ego,, Dg,. (40)

y-I •=VaT-t(41)

D=dx&

In addition, we introduce the shock layer variable y= y,/I, and the fast variable

YJ = Y, i62. The boundary conditions (38) - (41) and the structure of (27)-(30) dictate

the following scaling for the mean flow and disturbance characteristics

= 1+82 [u,(x,,y)+-,u(x,,yx,y 2,t)]+-.. (42)

5=p,(x,, y) +e(x 1.y,x,y 2,t)+... (45)

Substituting (42)-(45) into (37)-(31) and linearizing gives the following system of
equations for the disturbance flowfield

__, dV1
DA , x A" +pA(xi, Y)- (46)

0 k 2

P:(xiY)(Dua +v 3(x,.y) V )+ =0 (47)

Pg(xiY) Dvw + (48)

DS, +v,(x,,y) =0 (49)

S' 'P I(50)

In the first order approximation, the boundary conditions (38) -(41) at y = g0(x1 ) are

= -" gODg1 (51)
Y+l
2

V, g (52)

p, =2gory, (53)

A= 0. (54)
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These conditions have been shifted to the undisturbed shock using the following
expansions for the steady flow profiles

dFF(y,)=F,(go)+r6 (o~,

where F signifies a flow dependent variable.

Since the coefficients appearing in (46)-(49) are functions of slow variables only, we can
apply the WKB method. Accordingly, a solution is represented in the form

q,= tq10(x2 y) +q, , (x,,y)+... exp( jf ,d,. +Ady-iox)

In the first order approximation with respect to the small parameterS, the system of
equations for pressure and vertical velocity are

[i(a- (o) + iAv,]"- A + iv 0  (54)
p,

"-[i(a - w•) + ilv, ]v,, + iA• P10 0 (55)
T" P,

. = P-. (56)p,.

Equations (47), and (50) for the entropy function S, and longitudinal velocity u, can be
found separately using solutions of (54) and (55). At some point (x , y), the system (54)-
(56) has a non-trivial solution if the wave numbers satisfy the dispersion relation

i

A? -- yra. -o)+Av,] 2 -O, (57)

which gives

T. a-a,

Accordingly, the general solution is

P10 = A1[ i -ex(AdydY C2 .ex i{Jzdy (58)
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where y, corresponds to the upper boundary layer edge. The constants C,, and C, must

be found from the boundary condition (53) and matching with the boundary layer
solution.

3.4 Matching

In the inviscid zone 2 of the boundary layer (see Fig. 1), the system of equations (20)-
(23) can be reduced to the inviscid equations for the pressureg, and the vertical velocity

0=P

0 ,, - 1-7--c+' ' y(u,- I- I)T O (59)

Z'" +i 0 (60)
(Y - )T,

Near the upper boundary layer edge U,(y) I, and T, '-0, as y-- y, -0, the limiting
form of (59), and (60) is

q,'+i -w =o (61)
7'

'+ia Q(1- c) (- 162)

The solution of (61), (62) is represented in the WKB form

=A 1  if dy + A2 ex i dy (63)

4 /, ' At e , a- o) -dy A,,exp.- "w dy

where A,,A, are constants. Using the definition

f ,7 =''- )MIT,, (64)

we obtain the following explicit forms for the disturbance amplitude, as y - y, - 0
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Po "4 P, ( (a -W)MdJ + A, exij -- ,'_ a)yM dy (65)

-O 4 NIT. Al 4p i (a - ()M dyJ A2 exp(If (a-ei)M 4iVJ] (66).

Now we consider the shock layer solution (58) as y-. y, + 0. Since the mean flow

temperature T.., tends to infinity, and the mean-flow vertical velocity v, = 0(1), the
asymptotic form of the solution (58) is

pAe -P,(Y,) q-exp-'• .-- ,1dy +q.cx 7dy (67)

f'(i'a-o a-,( O-4 J 1C. .exp(-f 7 ~dyl~- C2 ex 3fI wdyJJ... (68)

Using the scaling (44), (45), and the definition (56), we obtain the relation

T
T". = *Wa2

Accordingly, the vertical velocity amplitude 9, a &10 and the pressure amplitude plo are
respectively

P0 PIY~)[A ~{M J~x )dy) +A2 {xJ(a-o))Md JI (69PO "A p.(y')Al exp|- d +(a . , (69)

_04TA (x - __.41 ( d (70)

Comparison of the outer asymptotic limit (65), (66) with the inner limit (69), (70) and
accounting for the relaion p.,(Sy) - P, shows that the pressure and vertical velocity
disturbances match at the upper boundary.layer edge, y = y,.
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On comparison of the boundary-layer flow field representations (5) with the
corresponding shock-layer flow field expressions (42)-(45) and if the disturbance
characteristics are normalized in such a way that the pressure amplitude is p = 0(1) in the
boundary layer, then:,
1. p = 0(1) in the shock layer.
2. The temperature amplitude T=0(1)in the boundary layer, and T= 0(52) in the

shock layer.
3. The longitudinal velocity amplitude is u = 0(1) in the boundary layer, and u = 0(82)

in the shock layer.
.4. The vertical velocity amplitude is v = 0(1) in the boundary layer, and v = 0(8) in the

shock layer.

This statement is schematically illustrated in Fig. 3.

-4 - - - -

U=0) ON=00(1) _1__ O 0)

Fig. 3 Orders of magnitude for the amplitude of the velocity, pressure and temperature
disturbance, (normalized with respect toe).

Consequently, , the boundary conditions

U0(y,) a f (Y,)=0

Vo(Yy,) a a(y.) - 0 (71)
T0(y.) n 8(y.) = 0

hold to 00
On the wall surface the no-slip conditions are

f(0) = 4(0) 89(0) * 0. (72)

Equations (20)-(23) with the boundary conditions (71), and (72) consititute an eigenvalue
problem. To 00 ), this problem does not depend on the shock-layer flow. According to
(71) the upper boundary-layer edge separating the hot viscous flow from the cool shock-
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layer flow behaves as a solid wall. In spite of the strong interaction between steady flows
the disturbances with the phase speed less than unity only weakly interact with each other.
However, the eigenvalue problem implicitly rather than explicitly depends on the type
of interaction, because the stability equations include the steady flow profiles.

3.5 Weak Interaction case

For weak interaction, the inviscid flow parameters tend to their freestream values as
y -+ -. Then the representations of the pressure, density and temperature in the
boundary layer are [16]

O(x'yt 0 [p,(x,,y)+e.pCx, x,,y.t)]+.. (73)j•(x~ (y~t _ (7 )M2

T(x,y,t) = (- l)M2[,(x,,y) + r T(x,x,,y.I+.

From an analysis similar to the strong interaction case, we find that the stability equations
coincide with (20)-(23), if the similarity parameter is defined as

R = (74)

From the expression for the boundary layer di.placement thickness [16]

8 =[(-l)M2 7R ' (75)

the explicit form of the small (interaction) parameter is

- e(-1) 2(76)

Re_

From (74)-(76) we obtain the relation 5 - I R, which is similar to the strong interaction
cie. To O(6), the boundary conditions for the disturbance at the upper boundary layer
edge are givcn by (71). Similar to the strong interaction case, the upper boundary layer
edge separates a cool free stream from a hot flow in the boundary layer, and behaves as a
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solid wall reflecting the boundary layer disturbance. The elgenvalue problem (20)-(23)
with boundary conditions (71), (72) is valid for the weak Interaction case, If we
simply replace the mean flow profiles by new ones. Consequently we can study the
boundary-layer stability with respect to disturbances of phase speed c < I for strong,
weak, and moderate interaction regimes using the same algorithm.

3.6 Thrmedimenslonal case

The foregoing analysis has been extended to the case of 3-D disturbances in a 3-D
hypersonic boundary layer. Here, the disturbance is represented in the normal mode form

q(x, yz.1) = q0 (x, .y)* exp[iJa(xi)dx, + ifz,- iar] (77)

where z is the lateral (spanwise) coordinate.

For this case, the 3-D system of stability equations is reduced to a 2-D system by the
following transformation of the mean-flow and disturbance characteristics

kV =a 2 +iPU., = aU, + a, T , T" T, (78)
k

1 =jaovo -0)f = 1 -(CIU + • 0),O (P V= 0)- -

where W,, and wo are the mean value and the disturbance amplitude of z-velocity
component respectively.

Equations (20)-(23), and the boundary conditions (71), (72) take the form

•f'+ - c)f=. 1 +i 9 (79)

-c --- • +.i 4 (80)

•-•- T"= V+(Y-I)(V"+ i)+;(U'_-,)--8 (82)
Pr. kR T., "Tr,

f(0) =(0) 8(0) =0 (83)
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f , =(y.,)40 O(y,) =0 (84)

Note that this system may be used to study cross flow instability at hypersonic speeds. In
contrast to the full Navier-Stokes stability equations, the system (79)-(82) does not
contain second derivatives of the mean-flow profiles. This saves computational time in
otherwise time-consuming and intense calculations of the basic flow distributions.

3.7 Interactive steady flow

Strong interaction mean flow profiles forU, and T, can be obtained using a self-similar
solution of the boundary layer equations (see for example [ 11, and [17]). We consider
the boundary layer on a flat plate with constant surface temperature. For brevity we
assume that the exponent of the viscosity-temperature law is n = 1. On introduction of
the similarity variables

P, d (85)

(21 Pjdx,)v T'

U. (17) - F'(r), H, (r7) 1G(r7) (86)
2

T, (7) = 1(G - F). (87)

the boundary layer equations become

F" + FF ' Y (G - F'2 ) = 0 (88)
3'

( G FG'+2 F'FF) =0 (89)

F(O) a F'(0) - 0, G(O) = G. (90)

F'(-) = 1.G(o,) = 1. (91)

For strong interaction, the pressurc is

P,(x) = Box,' (92)

3-17



SC71062.FTR

where the constant B. is obtained from the interaction law. With the Tangent-Wedge
approximation*, this constant is [17]

BO 'a3 '-'(+I), -111"(0)j T, )d;. (93),2y (

The system of equations (88)-(91) was integrated using a fourth order-accurate Runge-
Kutta method. Distributions of the velocity U, (n), and temperature T, (q) are shown in
Fig. 4. The calculations were performed for an adiabatic wall; the specific heat ratio
is y = 1.4, and the Prandtl number is Pr = 0.72. Integrating the temperature profile, we
obtain from Eq. (93) that A = 1.463.

77 5.0

4.0'

3.0

2.0

7;(07),U07
1.0

0.0 .. . . . .0.0 0.2 0.4. 0.6 0.8 1.0
Fig. 4 Self-similar profiles for velocity, U,Q(7) and temperature, T, (17) in a hypersonic

boundary layer on an adiabatic lat plum; y = IA, Pr - 0.72, n = 1.

Moe asymptotically Consistent values for this constant can be obtained form hlype•onic SmallDisuibmce Theory. Numerical solutions can give other estimates. However, neither will change thecssnit sta•iltlly behavio discused he•.
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3.8 Stability computations Lend results

To obtain the results to Ix. discussed, the eigenvalue problem (79)-(84) was solved
numerically using the strong interaction mean flow profiles (86). (87). The system of
stability equations is transformed into the form convenient for integration

= A(k,. UTR)Z (93)

4,(0) = 40() = 4,(0) = 0
Z,(-) = Z1(.-)=Z5(o.) =0

where Z(rq) = (f,fi,;,,r,O,O6)ris the eigeovector. According to the definition (85) of
il, the similarity parameter, frequency and wavenumber are rescaled as

= rR. ff = ra, rk (94)

r=(2PdxB,) =2'2B; X,. (95)

Fourth order-accurate Runge-Kutta integration of the boundary problem (93) was
performed using an the orthogonalization technique. For the spatial stability problem, the
eigenvalue E(i') is searched at fixed real frequency U" by the Newton iteration method.
Unstable regime corresponds to lmr(k) < 0.

Calculations were performed for 2-D eigenmodes with P=O and the phase speed
Re(c) <1. The mean flow corresponds to the adiabatic case for specific heat ratio
y= IA, and Prandtl number Pr=0.72 (see Section 3.7). The exponent of the
temperature-viscosity law is n = I.

In Fig. 5, distributions of Rc(F) arc shown as a function of the frequency &" for
Reynolds number 1=-2795. It is seen that spectrum contains two families of normal
modes denumerated as 1,2,..., and 1'.2'. At the intersection points,
Rz(,.) = Re(k'.,), the phase speeds of two modes coincide implying their
synchronization. This pattern is qualititatively similar to those obtained by Fedorov and
Qushchin [4], [5) from the inviscid stability analysis of the short-scale disturbances in a
shock layer. According to this model, the family 1, 2, ... in Fig. 5 corresponds to the upper
waveguide located between the boundary layer edge and the second turning point
y,2:U,(y,j) = Re(c)+ a(y,2), where a(y) = 45 - l)T5,(y) is the normalled local sonic
speed. The family 1',2',...corresponds to the lower wa'reuide located between the wall
and the first turning point y,,:U,(y,,)=Re(c)-a(y,,). The disturbance pattern is
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schematically shown in Fig. 6 for the short-wave limit. Large number modes behave as
acoustic waves with small damping due to viscous dissipation.

30-
k ()

202
20 1'c=1

10

00 15

Fig. 5 Distributions Re k .(Ui) for the lower waveguide modes m a '2'.. and for the
upper waveguide modes m=1,2...; -2795.

uppe

y .o 5.looer

quset ne acouhc rays

aguider

x

Fig. 6 Schematic pattem of disturbance flowfield in the boundary layer.

Near synchronism points however, the upper waveguide wave interacts with the
corresponding lower-waveguide wave through the quiet zone depicted in Fig. 6. In
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accordance with asymptotic model [4], [5], this interaction causes a splitting of the
dispersion curves k(i-') that can lead to instability.

O" 0.016

0.014

0.012

0.010

6.0 6.5 7.0 7.5 dl

Fig. 7 The growth rate o= -Im k, (6) for the mode I in the vicinity of the synchronism
point I-!'; R-2795.

As an example, Fig. 7 shows a spike of the growth rate o=-Imk,(a•) near the
synchronism point I-1'. For this case, the eigenfunction of the unvtable mode I is
shown in Figures 8a-8c. It is seen that the pressure waves are excited in both waveguides
and interact with each other through the quiet zone.

The temperature distribution clearly indicates the presence of critical and viscous
sublayers (scc Fig. 8c). In accordance with qualitative pattern of disturbance structure
shown in Fig. 2, viscous sublayer; are separated by a relatively thick inviscid zone. In the
critical layer, viscous effects cause strong temperature perturbations and very high
gradients. The velocity and temperature amplitudes quickly vanish as q -. m, whereas
the pressure disturbance is of the order of O(l)at the upper boundary layer edge. Thii
feature looks more graphic and realistic if the physical coordinate y is used instead of the
coordinate 17 which is highly stretched near the boundary layer edge.
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17 5.0
I
I

I4.0 I

II
3.0. Re(;r) I'

2.0 upper waveguide , - Im()

q12

1.0 ,

lower waveguide
0.0-

-1.2 -0.8 -0.4 -0.0 0.4

Fig. 8a Pressure amplitude x(rq) of Mod.e I at the synchronism point !-1';
T, 2795,7Tm 6.9 IS I11.03-i.0.015.
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7 5.0

40

3.0 upper wavegiide

1.0
Re(v) Imv

0.0 lower waveguide - "

-0o05 -0.04.-0.03 -0.02 -0.0 -0.00 0.01 0.02 V

Fig. 8b Continued; the vertical velocity v(1).

4.0

3.0

2.0 Re(6) JI -m(O)

critical

- - -- - - loer

0.01 , ?-
-0.04 -0.02 0.00 0.02 0

Fig. 8c Continued; the temperature 0(17).
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0.04

0.03

0. 1- stable Pegion0"01

.0.0 unstable rgion-0.03

0 1 2 3 46 7

Fig. 9 The Mode-I increment Jm(k, () as a function of frequency; R = 2795.

4.0-

3.0

I(zr) " Re 7r

2.0 m- R

upper wavguide

-10 .25 -i.0 -i ' -l -0. 0.0 X

Fig. 10a Eigenfunction of Mode I at the frequency = 0.39, R=2795,
" =2S13-i.0.02; the pressure yr(tj).
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3.0II

2.0 /- -,Re(v)

1.0

0.0

0 .0 . . . .. . .. r'. . . . . . ,. . . . . '. . . . . . ... . . • ..... ....
-0.3 -0.2 -0.1 -0.0 0.1 0.2 1

Fig. lob Continued; the vertical velocity v(r/).
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Fig. 10c Continued; the longitudinal velocity u(il).
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4.0

3.0
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2.0 Re (0

S.0 Ira(O"".....(..
c•fhal la " ".

0.0 ........0.. ... .
-0.3 -0.2 -0.2 -0.1 -0. 0.

Fig. lOd Continued; the temperature 6(ql).

For the modes depicted in Fig. 5, the most unstable is Mode I. Its increment Im k, (a) is
shown in Fig. 9 for the Reynolds number k = 2795. It is seen that the growth rate
achieves its maximum at the frequency U" = 0.39. The corresponding eigenfunctions are
given in Figures 10a - 10d. For this case, the pressure amplitude is relatively large in the
upper waveguide. The lower waveguide does not exist because its upper boundary is
y,1 < 0. Since the phase speed is small, the critical layer is merged with the wall sublayer
and blends to one deck as clearly seen in Figures 10c, and 10d. WVe believe that the Mode-
I instability is due to reflection of the pressure disturbance by the upper boundary layer
edge. For this reason, we refer to this mode as a "reflectional instability." Distributions of
its wavenumber Rekg(K) and growth rate o(l) = -Im/Z,(l) at the frequency 9 = 039
are shown in Figures I Ia and 1I b respectively. The reflectional instability has a relatively
small phase speed Re(c) - 0.14, which is typical for acoustic modes. For reference we
recall that the vorticity mode located in the transitional layer has the phase speed
Re(c) -* 1 (6]. From data shown in Figures 9, and 1 lb we conclude that the reflectional
instability has a relatively high growth rate, of the order of 2.10-2. Such a strong
instability may achieve the critical amplification necessary for transition.
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Fig. I la Reflectional instability wavcnumber Re k(R) a! frequency U = 0.39.

0.03!

,.02 -

0.01I
0 2000 4000 4000 5O00 10000

Fig. 1 lb Reflectional instability growth ratce (I') =-mF(') at frequency U 0.39.
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Since the eigenvalue problem (79) - (84) is isolated from the outer shock layer, we can
assume that similar mechanism of the reflectional* instability exists in hypersonic
boundary layers at, the moderate and weak interaction. Analysis of these cases is in
progress.

3.9 Dlscuasion

We have investigated the instability of the flat-plate hypersonic boundary layer to the
normal modes with wavelength of the order of boundary layer thickness and phase speed
less than 1. These modes are associated with acoustic waveguides located in the boundary
layer. Asymptotic analysis showed that in the first order approximation with respect to the
small parameter8, the upper boundary layer edge behaves as a solid wall which reflects
the boundary-layer disturbance. In spite of strong interaction between the steady shock
and boundary layer mean flows, the unsteady disturbances under consideration only
weakly interact with each other. From asymptotic analysis for the weak interaction case
we have found that the eigenvalue problem has the same form for both weak and strong
interaction. This allows us to study the boundary layer stability for the strong, moderate
and weak interaction regimes using a single approach. The eigenvalue problem is easily
extended to the 3-D case and can be used for analysis of the cross flow instability in three
dimensional hypersonic boundary layers.

From our eigenvalue problem solution for the strong interaction case, we conclude that
the reflection of disturbance by the upper boundary layer edge lcads to instability of the
upper-waveguide modes. We refer to this mechanism a. the reflectional instability.
Similar waveguide mechanisms have been ascribed to the dra-matic effect of thinning the
shock layer for, -+I in [91. There, thinning produces downstream amplification of
otherwise long wavelength fluctuations that decay downstream for thicker-shock layers.

Calculations have shown that the reflectional-instability mode has a relatively small phase
speed c- 0.14. This is consistent with recent experiments of Maslov and his group.
performed on a flat plate in hypersonic wind tunnel at Mach 20 (private communication).
They observed slow waves propagating in the strong and moderate interaction region with
a phase speed of the order of 0.2, and growing downstream. Since the reflectional.
instability mode has a large growth rate, it can compete with other unstable modes such.
as the vorticity mode. We expect that downstream amplification of this mode can lead to
early transition on hypersonic vehicle surfaces. These findings motivate us to study the
reflectional instability mechanism further.

We also found that the upper waveguide modes can synchronize with the lower
waveguide modes. Near synchronism points, additional growth rate spikes have been
found. This instability mechanism is similar to those obtained from qualitative analysis of
a simplified flow in a shock layer (4], (5]. In the vicinity of synchronism points the
normal mode decomposition is not valid due to the singular nature of the dispersion
relation. This situation has been studied by Fedorov and Khokhlov (3] for the case of

3-28



SC71062.FTR

moderate Mach numbers. Using their results, we assume that the nonparallel effects' may
cause strong exchange between modes near synchronism point.
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4. Low-frequency instability of hypersonic Interactive boundary layers
on a cooled surface

4.1 Introduction

This chapter reviews research supported by the contract and other funding concerning
propagation of unsteady three-dimensional perturbations in hypersonic interactive
boundary layers on a cooled surface. Such high speed boundary layers that are subject to
the combined effect of the interaction with a shock layer and cooling of the surface are
typical of realistic flight conditions and lead to substantial heat transfer and drag. The
geometry of a flat plate is considered herein. For this simple shape, the stability of even
the steady flow is complicated by a multiplicity of different mechanisms not exhibited at
moderate supersonic Mach numbers. Two classical limits naturally evolve at high Mach
numbers in this flow. Near the leading edge, a strong interaction regime occurs in which
the shock wave is not far from the surface and the viscous boundary layer and inviscid
shock layer are strongly coupled. Further downstream, the effect of the shock wave
disappears and the boundary layer develops under zero pressure gradient (weak
interaction). Strong and weak interactions have been studied extensively (see for
example, [1-3]. Transition to turbulence has been observed in the last region only.
However, as the Mach number increases, the strong interaction region expands rapidly.
This could significantly influence the early stages of transition, since it will affect
important receptivity and linear amplification processes.

In the limit of infinitely large Mach number, the temperature distribution has increasing
nonuniformity and cannot be described ;n closed form independent of the Mach number.
Additional distinctions are made in(4]. These include the observations that the domain of
importance is not semi-infinite as in lower speed regimes, the shock is strong and curved
and non parallelism can be more important and typical. Accordingly, the Orr-Sommerfeld
approach cannot be applied a priori, and a suitable hypersonic limit involving the Mach
and Reynolds numbers needs to be applied. Different types of instabilities can be studied
using appropriate scalings relevant to the characteristic wave lengths present.

An interesting type of instability is inviscid which is due to a generalized inflection point
within a thin transitional layer near the boundary layer upper edge. It was analyzed for the
moderate interaction regime in [5] where the transitional layer between the cxtemal flow
and a shear layer was considered and in [6] for a Fas with a Chapman viscosity law and a
unit Prandtl number. The main conclusion of these studies Is that there is a numerous set
of relatively weakly unstable acoustic modes and a most unstable vorticity mode. The
acoustic modes were also analyzed in [7] and [8]. The phase speed of all the modes is
close to the external flow velocity so that the relative growth is small. The results ame in
good qualitative and quantitative agreement with the computations for finite Mach
numbers in (9]. The more general cast of arbitrary Prandtl number and power law
viscosity was considered in 110] where the effect of the viscosity on the stability
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characteristics was included. Continuation into the strong interaction zone was treated
in[11] assuming the Sutherland formula for the viscosity and Prandtl number equal to
unity. Weak and strong interaction regimes were considered and it was concluded that
although the scaling is quite different, the qualitative features of the vorticity mode
instability are the same. The interaction leads to differences in the unperturbed flow
profile only and does not change the physical mechanism of the instability. No influence
of the shock wave arises because the perturbations are mostly concentrated in the.
transitional region between the shock and boundary layers. However, as shown in [8] for
the non-interactive boundary layer on a wedge such influence rmay occur in some
situations when there is a proper correlation between the wavelength scale and the
thickness of the shock layer. Another example of amplification of the small time-
harmonic perturbations in the curved shock layer was obtained in (4] by analysis of the
initial boundary-value problem in the downstream direction.

Other types of unstable waves are small phase speed viscous modes described within the
framework of triple-deck theory in [12] which showed that in supersonic flows, unstable
modes of this type are essentially three-dimensional, where the direction of propagation
lies outside the Mach cone. They dominate at moderate Mach numbers, but have
negligibly small growth rate at hypersonic speeds and inviscid instability prevails. The
last conclusion is correct if the temperature of the wall is of the order of the stagnation
temperature. The effect of surface cooling at moderate Mach numbers was estimated in
(13] in which it was found that it increases the growth rates and compresses the scales of
the eigenmodes. For sufficiently strong cooling, the wavelength becomes comparable
with the boundary layer thickness and a new moderate cooling regime occurs. Surface
cooling is typical for hypersonic flight conditions. Its influence on the viscous modes may
be significant. Special study of the strong interaction case is particularly warranted.

Analysis of the viscous eigensolutions in the strong interaction boundary layer was
initiated in [14] for the ..'.ady two-dimensional case. It showed that their strearnwise
evolution is controlled by a power rather than exponential law in the weak interction
case. According to [15], the exponent in this power law grows to infinity as the specific
heat ratio tends to unity. Therein, an analytic formula for the exponent was obtained and
it was shown that the disturbance. field is governed by the interaction between the viscous
region and the main part of the boundary layer, while the upper region plays a passive
role. A relationship between this mode and the Lighthill mode in the weak interaction
region was postulated. This conjecture was subsequently verified by Brown et al. (1975).
Another important result is that the exponent exhibits a sharp growth when the surface of
the plate is cooled. A similar conclusion was obtained in [17].

This effort focused on three-dimensional unsteady disturbances. From the foregoing, it
can be assumed that cooling of the surface will lead to appearance of short wavelength
eigensolutions in the unsteady three-dimensional us well as the steady two-dimensional
case. Moreover, these perturbations can be effectively confined within the boundary layer.
Because the local Mach number within the boundary layer is of the order of unity, a three-
dimensional instability similar to that considered in [12] for the moderate Mach numbers
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may be anticipated. In Section 2, the proper scaling for the perturbations field is
developed. The- asymptotic expansions, analysis of the each region and matching leading
to the complete formulation, which is a type of the triple-deck problem with a new
interaction law, are discussed in Section 3. As a simple framework to exhibit some of the
high Mach number physics and relate to the earlier two-dimensional steady effort, the
linearized forced transiew, problem of a harmonically oscillating hump starting its motion
at some instant of time is considered in Section 4.

In Section 4, the dispersion relation is analyzed and all eigenmodes with respect to
upstriam and downstream propagation are classified. In particular, the mode of Neiland -
Brown and Stewartson is shown to propagate upstream. As a confirmation of
expectations, another three-dimensional mode appears that is unstable in the downstream
direction. Its growth rate is not bounded in the short wave limit so that the forced problem
is well-posed on the set of functions with compact support in wavenumber space. A
limiting process to a wider class of functions demonstrates that the part of the solution
containing the fast growing modes is convected downstream. Hence, in the large-time
limit theperturbafion field consists of the time-harmonic component without an infinitely
growing mode. The far-field asymptotic of this component is estimated and the direction
of the maximal amplification versus frequency is determined.

Other possible mechanisms of instability and correspondence with experimental
observations in [18] and [19] are discussed in Section 5.

4.2 Fornulation

We consider three-dimensional short-scale unsteady perturbations in a hypersonic flow
past a scmi-infinitc flat. plate developing at a distance L from the plate leading edge in a
region where strong interaction regime occurs. The Cartessan coordinates (x,y,z) and
cor,.r-.,nding velocities (u,w,v) are chosen in streamwise, vertical and spanwise
directions, respectively. Freestream pressure, density, temperature and viscosity are
denoted asp_, p., T,,p.and the external flow ve!ocity as U_.

The specific heat ratio y and a Prandtl number cy are assumed to be constant, and the
dependence of the viscosity on the temperature is taken in a power law form

IA / g. = (TI T.)" (2.1)

The mean flow is basically controlled by interaction between the boundary and shock
layers and allows self-similarity. Its profile shown schematically in Fig. I includes three
characteristic regions: viscous high-temperature boundary layer, inviscid shock layer and
transitional layer appearing due to singularity in temperature behavior near upper edge of
the boundary layer (2]. As the plate temperature decreases, the boundary layer solution
becomes singular at the w',Al becausc the viscosity vanishes there, and according to
[13,17], an additional fourth buffer layer occurs near the surface where heat and

4-3



SC7IO52.FTR

momentum fluxes are constant while the temperature is of the order of the wall
temperature and changes rapidly together with the velocity.

y/L T/T u/U2 2
shock layer 0(0,) 2I h..

M ransitionlatl ve~r\

I2'|uret' ! 1*~****I

ontn ues Qb,a'*) I 0(M I
boundar layer O~h) (M 01)il

cntn luxes (h .C

x/L

Fig, Qualitative distribution' of mean flow temperatures and velocity across boundary
layer.

For convenience, the following two small parameters characterizing mean flow are
introduced

h= Re-u`M'n,r=TI(M'T.) , (2.2)

where M is the Mach number, and Re is the Reynolds number. Both of these parameters
are based on freestream conditions and the distance L. The quantity T, is the wall
temperature. For the irrong interaction approximation to be applicable, the
parameterh which is the .Wative thickness of thc boundary layer must meet the additional
constraint

hM -.+

4.2. 1 Preliminary considerations and scales

In this unsteady framework and consistent with the foregoing discussion, the
characteristic length of the disturbances are assumed to be small in comparison with the
global scale L, and their structure in the y -direction conmists of multiple layers. There are
at least two different regions: the main pat of the boundary layer and a thin viscous wall
sublayer. In what follows, the characteristic length and time of the perturbation ate
respectively denoted as Dx and Dr ;velocity and pressure variations as Du and Dp all
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values refrrring to the viscous sublayer and to the main part of the boundary layer by
subscripts v and b, respectively. For order-of-magnitude estimations it is assumed that:

(a) the pressure variation across the boundary layer is negligibly small.

(b) strearnwise and spanwise scalings are the same.

(c) the viscous sublayer lies at the bottom of the buffer layer so that the undisturbed
flow in that region has a linear shear '.elocity profile whose slope can be evaluated
by comparison of the momentum flux on the surface with that of the boundary layer,
so that

AT'*' / Y, - p(Tb)Ub / yA., - T.

(d) Within this sublayer, the viscous forces are in balance with the inertia and pressure
gradient terms so that

p,aAu,, / Ar - Ap / Ax - u,Au, / y,, .

(e) in the main part of. the boundary layer the perturbation field is mainly inviscid so
that only inertia and pressure gradient terms must be kept in balance. This implies

P Auý / AT - Ap / A ,

(f) interaction occurs basically between the main part of the boundary layer and the
viscous sublayer and perturbations of the displacement thickness have the ,ame
order in these layers

y AU, Iu - YbA4h Iu,.

(This follows [15] for the steady case.)

(g) flow in the viscous sublayer is unsteady and nonlinear with respect to the time and
amplitude scaling of the disturbance

AX / At - u'.Ap - Pm,',

For completeness, these estimations must be supplemented by the order of the mean
boundary layer values

Y - LU-U..Pb - p.hM ,T - T.M,

as well as the equation of state

p / (pT) M Const.
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These relations lead to a unique scaling for the perturbation field in the viscous sublayer
and the main part of the boundary layer. To provide matching between these regions, an
intermediate layer of the constant momentum and heat fluxes is considered. Its thickness
Y,, may be evaluated by comparison of the heat flux near the surface and with that of the
boundary layer. Thus,

(T.)TI / Y. - P( Tb / Yb
Also for matching, a fourth upper layer located at the bottom of the shock layer is
introduced. In that region, pressure variations in the vertical direction are assumed to be
essential. Neglecting viscous forces, the thickness of this layer, Dy is given by the
condition that the local slope of the characteristics has the same order as the relative
thickness of the region,

where the local Mach number, Mloc is connected with the local temperature Tloc
within this layer

which, in turn, may be explicitly written following the asymptotic formulas (3.02), (3.13)
in [2] reexpressed in tcrms of physical variables as

T"I;. - T-M 2h 2 (Ay /Lh).

This completes the estimates. As shown in 1[15] for the upper layer, f 17] and (13] for the
buffer layer, both layers play a secondary role in the interaction but are necessary for
rational formulation of the problem.

Coupling of all of the above estimations gives us the appropriate scaling, which may be
written in terms of the small parameters h and e in the form

x= L(I + •E2 4 •X), (2.3)
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The perturbation field is schematically shown in Fig. 2. It is decomposed into four
characteristic rcgions: the lower viscous region y, = 0(1), the buffer layer y2 = 0(1), the
mean part of the boundary layer y3 = 0(1), and the upper layer y, = 0(1) located at the
bottom of the shock layer above the boundary layer upper edge y. = y.. Assumption (a)
that the pressure variation across the boundary layer is negligible will be correct if the
following restriction on the small parameters is valid:

h•" 2 " -0, (2.4)

i.e. , the streamwise scale is greater than the thickness of the boundary layer. With such a
restriction, the upper deck will always be thicker than the transitional layer at any realistic

(a,•,,+4o).

0(e2+4°3))

Upper Deck O(h ,)

y/L

O(h) Main part of the boundary layer

zIL Buffer Deck O(h '

0(he1 +2o)) Viscous Deck

X/L

Fig. 2 Asymptotic structure of the perturbation field, q = 2(1 + 2o)(3y - 2)(3y - 1).
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4.3 Asymptotic approach.

From condition (g), a typical amplitude of the perturbation within each layer can be

formulated. For these, the independent variables for the no' region are {x,z,,t,,yJ},

respectively, withn - 1,...,4. These will be studied in the next subsections.

4.3.1 The viscous jublayery, = 0(1)

The solution in this layer is represented in the form

p=p..hM=(p +ej'2 p + +...) (3.1)

u=U..e U1+...

w =U.£*°wu+...

V U-he-,Ovl"!. I+

T r .M2 (&TOI..

pv-pjh2(e"po+...)

In the absence of perturbations, the solution is a uniform shear flow

To0 =,o =P, =p,0 o,u, =CIy,,w, z=O, (3.2)

where the undisturbed pressure po and shear stress C, are determined by matching with

the remainder of the mean flow. Substituting the expansions in the equations and
retaining like orders gives

po(au, / at, + ll,•ut I ax, +v,,auay,+ w,,au, / azt.
-1apt laXI = a)' , I/ Cay , (3.3a)

PO(Ow1 at, +u•,aw11 / aA + vilawi, 141y + wilaw,,/3Z,.

Y'"api, laz, = a2w, lay,2  (3.3b)

Pt = P,,(x,,z,,t,) (3.3c)

a%$I ax, + awlI az' + avI ax, 0 (3.3d)
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The boundary conditions on the surface are the no-slip conditions

Us= I = Wil =0 at Y1 =0 . (3.3e)

At the outer edge of the layer, the asymptotic behavior of the solution is

u, = lY, + A(x,, z,, t,) ..

W= -(,oPCyO)" J(pP I/ /z,)dx 1+....

W11 = -( opoClyy' J(ap1, lIz,)dxl+... as y, -* (3.30

To complete the problem (3.3) a relation between the pressure perturbations PA1 (x , zI ,tj)
and the displacement thickness -A(x,,z l,11)must be applied. This relation (interaction

law) will be obtained after analysis of the other decks.

4.3.2 The briffer region y, = 0(1)

Although this layer is still thin in comparison with the boundary layer, variations of the
mean flow temperature and density within it are not small. Requirement of continuity of
the pressure and the appearance of the asymptotics (3230 rewritten in terms the variable
Y2 implies the following expansions in the buffer region

p ph 2M2 (p20 +CI p2+...) (3.4)

u Uý.( (ey(0 2) + e'u 21 +4..)

W " -.. w 1+"20W 21 --.

T = T.M'(ET2o(y2) + E` TI.

p =p-h 2e'p(y 2)

The orders of the temperature and density disturbances in the above expansions are
estimated from the energy and state equations. Substituting these expansions gives the
problem for the mean flow and unsteady perturbations. The mean flow is characterized
by constant fluxes of heat and momentum, i.e.

d((T),du2,O ,dy2) idy2 = 0 (3.5)

d((TD)"dT2Q /dy 2) dy, = 0
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pmT 0 = P=o Const.

The boundary conditions are

T2= l, u20 =Oat Y, =O. (3.6)

This system leads to the solution

T29 (I + (I + 4 o)y2  (3.7)

P20PA

p 0 = p20 T20.

The pressure p., wall shear stress Ct and heat flux C. cannot be specified until the global
mean flow solution is obtained. The next approximation gives us the perturbation field
equations

U2aU2 1 /ax, + v21dsu I dy2 =0 (3.8a)

P,20UaW21 Iax + '-JP2, I z, = 0 (3.8b)

ap21 •Y2= o (3.8c)

UT 21, ax, + v,,,d , dy2 =0 (1.8d)

p20u 21 /A + u.pD21 •Ix +•(pM,2 1 )laY2 =0. (3.8e)

P2 / p2 + T2 , I T20 =0 (3.80

This is a system of linear inviscid equations with the absence of the pressure gradient in
the x -momentum and energy equations. Note also that this deck and all decks above are
quasi-steady in contrast to the viscous sublayer as for other speed regimes. Formally, the
problem (3.8) is second-order with respect to the vertical variable y2 (eqs. (3.8c),(3.8c)).
To obtain, a unique solution it is therefore sufficient to specify continuity of the pressure
and matching of the y-component of the velocity with asymptotic (3.30) at the outer edge
of the viscous sublayer. By direct substitution, it can be verified that a solution of the
system (3.8) meeting these conditions is

P2= PjI(x,,zl,t) (3.9)
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u= A(x,.z , ,t, )C'l du2o / dy2

W21 = -TM(gpO 0 )u'j (OP, /Iz, )dr,

V2 =-u"•C,, aA / Ox,

T21 =A•'dT, / IdyI

p2, = -AC-j(p 2 o, / T2D).

4.3.3 Main part of the boundary layer y, = 0(1))

Asymptotic expansions within this region may be obtained by analysis of the limiting
form of the buffer-layer solution (3.9) for large y2 in terms of the variable y,, or by direct
estimation from the equations of motion, assuming that the pressure perturbation is of the
same order as before. This gives

p = P..hM 2 (P30 + '2 "P 3,+...) (3.10)

u = U.J(u(y3)+ -"+'U 31+...)

v = U.h(•-"V3, +...+V3(y3)+..)

T = T.M2(T(y) + T3+...)

p =,p-h 2PI(OI

where the out-of-order term v,, included in the expansions for the vertical velocity ; not
involved in the leading-order problem for the disturbances but is necessary for a
consistent description of the mean flow. The unperturbed boundary layer flow profile is
locally uniform (no dependence on the short scale streamwise variable x,) and obeys the
system of ordinary differential equations that result from the usual three quarter power
similarity (see for example [201). A complete formulation also includes the problem for
the inviscid shock layer. This complete system was investigated in detail in [2], and in
von Mises variables in [31. A brief analysis of the problem in terms of the physical
independent variables is given in the Appendix. Here, we note only that the undisturbed
pretsure is constant and the temperature and density distributions are connected by the
statc equation
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P30= PO, OT- PO (3.11)

The leading-order problem for the perturbations has the form

p,,(uu,, I ax, + v,,du3 o Idy3 + r'"' 3, ! x= =0 (3.12a)

P3uGoUw / I dx + r'aP31 I iz 0 (3.12b)

aP3,/4Y3 =0 (3.12c)

p,1 (u3OaT3,1 I x + v,,dT3. I dy3 -(- -)y'uKjcp 31 I dx, =0 (3.12d)

P31 P:3 + T31 IT30 =P31 PO (3.12e)

Like the problem (3.8) for the buffer layer, this gives rise to an inviscid linear system of

second order with respect to the vertical variphle, but with non trivial pressure gradient
forces. Due to the inviscid nature of the problem, it is sufficient to apply conditions of
continuity of the pressure

pII(xIZAl), (3.13)

and matching the vertical velocity component with the buffer region solution. It is shown
in what follows that the upper region is also mainly inviscid and the same continuity
conditions should be applied for its matching with the main part of the boundary layer.
Therefore, the analysis can be limited to solution for the two variables p3,J',, only.

Successively excluding all other variables by expressing them in terms of p3, v3,, and
their derivatives gives accordingly

PoP-:S V3•,o2 i id - pApO(du, / dy)av3, /lax, +

r 'P,0d ,12a x -a 'po(O"p", + dx p1 2/d4)=0 (3.14)

The solution of Eq. (3.14) matched with the buffer layer is

dv,, lax, =u,.(-C'jdA/dx,a +(7pOf'J(-a'pj, Idx,, +TX,)0u;'fPIp,)d~
(3.15)

where the operator A is the two-dimensional Laplacian, i.e.

'iPa "8Put I Ix, + a pit lzt. (3.16)
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The integrand in the right-hand sidc cf the cxprcssion (3.15) has a singularity at
y3 = Owhich may be evaluated from asymptotics (A.4) 3s O(y-" ). Since it is a weak
singularity for positive ao, the integral exists and the solution is regular at any y3 > 0.

4.3.4 Tile upper region y,, = 0(I)

The undisturbed flow in this layer is an asymptotic "tail" of the shock layer solution
considered by many authors (see, for example, [2,3]. These analyses show that the
leading-order pressure and velocity are constant in this layer while the temperature and
density have a power law singularity at the lower boundary (y, -4 0"). Assuming the
pressure perturbation to be of the same order as that within the boundary layer, the
amplitudes of the other perturbation components can be estimated. This leads to solution
expansions in the form

p= h 2 )M2(p40 + e'p 41 +.,.) (3.17)

u = U.(i+.)

V = UVh(v,, + 53"" 2c'•" 3 71-' V,, +...)

T = T~h2M 2e'-40(+2  "'0-(T0(y2) + CIuT4 i +...)

P =_ p.4,•,,2,,,0 -1,(P40 (Y2) + C 1+2"P, ...

The above expansions do not include perturbations of the stream- and spanwi.e velocity
components since, like the mean flow problem, the leading-order equations for the
perturbations decouples and these velocities are not involved in the problem for
{p,p,T,v).

The mean flow distribution may be obtained in an explicit form from results of tile
previously mentioned authors, giving after some manipulation of the dependent and
independent variables

P0 = PO (3.18)

Y,,0 = (3 / 4)yjo,

T,4 = B(y4 )-2/(I-2

pA0 = POB9"(y,)2 VY 2)
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Here, the constant B is expressed in terms of the the boundary layer pressure po and the
location of the shock layer y3, as

B=(3I2"(y +1)-Y0"(y'-!) (3y-2 2 Y5 4 1).

In the next approximation, the equations for the perturbations take the form

pav41,,1, +-'ap,, l ay4 =0 (3.19a)

p40(aT7l axI + v4 YdT 4l dy4 )Y-(4r-1) P4 , lx, =0 (3.19b)

ap41 ax, + s,4,•'V41,)ly0 (ol9c)

61PIOP + T41 i/T4 =P41 Po (3.19d)

This system is reduced to a second-order equation for the pressure with boundary
conditions of continuity of the pressure at the lower boundary and a radiation condition at
the upper one. This leads to a standard hyperbolic problem in a nonuniform medium

a'p 41,ax,, -a"ap(,, ayI/ ,4 =0 0 (3.20a)

P4=PA a! y4 =0 (3.20b)

radiation: {a / ax, + q T.O y4)p4 -- 0 as y, 4 +o. (3.20c)

A formal solution of this problem may be obtained by application of the Fourier
transformation with respect to x,, solution of the resulting ordinary differential equation,
and inversion. If the pressure on the lower boundary is decays sufficiently rapidly in the
upstream direction, the solution exists and its explicit form is

p 41'= ,{(G(X1 -4, y4M)ONp, (4. z,,fl)d4. (3.21)

The kernel function G has the integral representation

G(4.y4 ) =H( - Y)no - er1N- q)sin(2zq).

fJ(kY /2)l,(kY)e 'Idk /k, (3.22)

where

BR'/(1+r,2Y'y " 2, r=2/(3y- 2 ). q-(r+i)/(r+2)
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Here, H(x)is the Heaviside function and 1,(x) is the modified Bessel function. Solutions
for the other components may be expressed similarly. The expression for the velocity at
the lower boundary is

v -D .{p,, (4,z,.;•l)/(I R - )'-2 qd4 , (3.23)

where the factor D is

D= (ynpo)-IB"-(r + 2 )-€ r(l - q)r(2q - 1)FT(q) sin(2 iq.

At the outer edge of this region, the nearly uniform medium approximation becomes
applicable. Accordingly, disturbances will propagate along characteristics. The
disturbances will enter the main pan of the shock layer along positive-slope first family
characteristics and propagate up to the shock wave. They then reflect as, characteristics of
the opposite family toward the boundary layer. From an estimate of a typical slope of the
characteristics within the shock layer it can be concluded that the reflection zone lies
downstream of a distance of the order of L. Assuming the upstream influence through
the boundary layer is weak, the reflection effect can therefore be neglected.

Another comment concerns matching with the solution in the main part of the boundary
layer. To provide this matching Bush in [2] has demonstrated that a thin transitional layer
needs to be interspersed between the boundary and shock layers for the case y * I where
the singularity of the mean flow is being smoothed out. Without special analysis, it is
evident that the viscous forces are still negligible in this region (for the perturbations
only) and leading-order equations for the vertical component of the velocity and pressure
are very simple, since both variables are constant in the vertical direction. This behavior
may be established by direct order-of-magnitude estimations and also follows from the
fact that the pressure and vertical velocity are finite at both edges of the transition region
while its thickness is much less than the thicknesses of the boundary and upper layers. In
other words, the transitional layer is passive with respect to type of the perturbations
considered.

On the other hand, the typical amplitude of the vertical velocity in the boundary layer is
much greater than within the upper deck. Therefore, the necemary matching condition is
that the boundary layer velocity is zero at the upper edge, i.e.

V), = Oat y3 = Y3o. (3.24)

This means that the boundary layer di.turbances are almost fully reflected by the shock
layer. This result is actually the same as that obtained in 115) for rapidly varying steady
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perturbations. Applying the requirement (3.24) to the formula (3.15) a relation between
the pressure and displacement thickness

8+A ax, +Tu;P d 3 = 0 (3.25)

is obtained. Equation (3.25) completes the problem (3.3) for the viscous sublayer. This
gives a new kind of triple-deck problem with a different interaction law than previously
considered. In the two-dimensional case, the last term in (3.25) degenerates, and the
formula is reduced to a more simple form

A +const p,, = 0

which was analyzed in[ 16] and [21).

4.3.5 Final formulation.

The problem (3.3) with the interaction law (3.25) is now considered. To reduce it to an
invariant form, an additional transformation of the dependent and independent variables

(xz) pCj-Iyý(X.Z). (•,.W,,) =Cý yo(•.W) "'

(x,.z,)=p0C7y;'Y; v" = p'Cy 3V

I( P. (3.26)
is applied. A new parameter 0 depending on the properties of the gas via parameters
(o,t,€o)

cos T (y)dy (3.27)

is also introduced. Numerical values for all factors used in this scaling are given for air
and helium in Table 2 of the Appendix . The right-hand side of the last expression is the
average v-due of the inverse square of the local Mach number across the boundary layer
and is less than unity for both these gases (probably for most others as well). After
substitution of the rescaled variables into (3.3), (3.25), the governing system of equations
takes the form

Ur + UV X + VUY + WUZ + PX= UV (3.28a)

Wr + UWX + VW, + WWz + Pz =W (3.28b)

UX + Vr + WZ -0, (3.28c)

and the boundary conditions are
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U = V =W Oat Y =0 (3.29a)

U"Y+A(X,Z,T)+...,W-40asY-+" (3.29b)

A. +sin"2 OP - cos2 P9p 0. (3.29c)

Here, subscripts denote corresponding partial derivatives and the function A is
renorrnalized in the same way as the streamwise velocity. That formulation does not
include any effects of forced disturbances coming from the surface or external flow. For a
perturbed surface, such generalization can be made by simply changing the boundary
condition (3.29a), to

U = W = O, V Fr at Y =F(X,Z,T), (3.29a')

where the function F describes the scaled shape of the surface. Reformulation for the
case of external flow disturbances demands a special study of their transformation within
the shock layer and is outside the scope of this chapter. Instead of the homogeneous wall
conditions (3.29a) the modified version (3.29a) will be applied in what follows. In
keeping with the primary thrust of this study, a linear stability analysis of the resulting
problem will be made.

4.4 Uneariztlion and solutlon

In the linear approximation, the solution is expanded in a power series of a small
parameter (a) cha,-acterizing the amplitude of the perturbation so that

U = Y+ au+...;W = aw+...;V = av+...;P =ap+...;F= af+... (4.1)

Here and below, small letters denote only scaled values and do not correspond to primary
dimensional variables as in Sections 2,3. Substitution of this representation into
(3.28),(3.29) gives

ur + YuX + V+ Px = uYY (4.2a)

wr + YwX + PZ = wi, (4.2b)

UX +vy+wZ =s0 (4.2c)

u--f,w=0,v=frat Y,0 (4.2d)

uN + sin2 Opx -cos 2 8Pz.=0,w-.0at Y-., (4.2e)
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For the solution of this problem to be unique, an initial condition at some instant of time
must be specified. This condition is assumed to be

u= v=w=p=f =Oat T<O, (4.3)

implying that surface variations are switched on at T = 0. These variations are assumed
to be bounded continuous functions vanishing in the X - and Z - directions

f(X,Z,7) e C,f -o 0 as X2 +Z2- . (4.4)

From the restriction (4.4) it is pla~usible that the solution is also bounded at any finite
instant of time* and the double Fourier transformation with respect to the streamwise and
spanwise variables can be applied. Based on tt.. standard assumption that the temporal
growth is not faster than the exponential one, the Laplace transformation with respect to
the time can be applied. These transformations written symbolically as

L(T -- -iai)F(Z -. ifl,X -* it(u,w,v,p,f),(a,43) E (-e,+-o),(-io) > ') (4.5)

reduce the problem (4.2),(4.3) to a system of ordinary differential equations (the Laplace
transform variable was rotated in the complex plane for a more obvious analogy with the
canonical triple-deck formulation to connect with previous work). The solution procedure
has been used by many authors (for the three-dimensional unsteady case see for example,
(12,22]. Differences with the present formulation relate only to the form of the
interaction law used. For this reason details of all intermediate steps including the
inversions back to the physical space will not be presented. Only the integral
representation for _pressure is given which is

p= (2 X)2j jfexpviaX + i13Z)da.I13 exp(-iwT)D'(a,4 8, (o)f(ta,1, o)da (4.6)

where the function f(alo,) is the shape of the surface under the transformations (4.5).
For the problem considered here, the dispersion function D expressed in terms of the
Airy function, Ai is

L ~a,) = (iaV'3 [( )X ) Ai(z)dz+sin' 0-
(P / a) 2 os'G (4.7)

= iw I (ia)2';-z <arg(ia)< z,(ia)"' >0 for ia> 0.

' Of course. it does cot exclude the pos•ibile existence of unbnumded (unstable) solutions In the large-time
limit
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The contour C in (4.6) passes from left to right half planes of the complex w -plane
above all singularities of the integrand (due to causality principle), and both its ends are
directed into the lower halfplane to provide convergence of the inversion integral for p.
Since the integrand is a function of the wavenumber (a,fi), the contour C also depends
on the wavenumber.

Properties of the solution are determined by zeroth of the dispersion relation (4.7) which
correspond to eigenmodes of our problem.

4.4.1 Analysis of the eigenmodes

Since the square. of the ýpanwise wavenumber / occurs in the dispersion relation only
the case P3> 0 need be considered. Results of numerical analysis of the dispersion
relation for 8=61.67. corresponding to air (see the Appendix) are presented in Fig. 3.
The simplest picture is observed in the two-dimensional case (P =0). There is a
denumerable set of eigenwavenumbers a with real positivc frequencies, one of which
lies in the left lower quadrant of the complex a -plane, and others move from the zero at
o) = 0 into the right upper quadrant. In the steady case, the first root may be written
analytically as

ia = {-3AI (O)sin3 2)'. (4.8)
Accounting for the scalings (2.3), (3.26). this value agrees in the Newtonian limit
discussed in [23] (noting that according to (3.27) sin0 -+ 1 as y -"* I ) with the exponent
in [16] their powcr law for disturbance propagation is converted to the approximate
exponential form

• ! . . I p

".2 .15 -'10 45 a 06 1*

Fig. 3 Movement of the roots in complex plane as frequency goes from zero to infinity.
(Solid, three-dimcn.tional case at /3 = I ;dashed, plane modes at / = 0). Arrow.s
indicate increasing frequency.

(x I L) - exp• nAt I L) as n .. , nAx I L a 0(l) (4.9)
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This implies that the two-dimensional steady state version of the asymptotic regime
considered here describes the Neiland - Brown and Stewartson eigensolution.

In the three-dimensional case, all these modes also exist and exhibit the same qualitative
behavior, but in addition, two more eigenwaves appear. One of these is located in the left
upper quadrant and, like all previous ones, does not intersect the real axis. Another one
starts from the zero in the right upper quadrant, but after some critical value of the
frequency, intersects the real axis. The large-frequency limits of these modes are
respectively

a =-,Scot9+i0;a(" =cotO-iOasw -+.a. (4.10)

The imaginary part of the second three-dimensional mode versus the frequency is shown
in Fig. 4 at different positive spanwise wavenumbers P3. As P3 is increased, the depth of
the minimum also increases, i.e.

min =.4,1ra(a)}) -, as P• 1-4 +.o (4.11 a)

or, similarly for the real wavenumbers and complex frequency

max•, 0 nIm())) -- +- as P -e +,. (4.1 Ib)

Equations (4.1 la) and (4.1 1b) imply that the contour C in the integral (4.6) actually
depends only on the spanwise wavenumber P3, and hence the order of integration with
respect to frequency and streamwise wavenumber can be changed. Accordingly, Briggs'
[24] criterion can be used to specify the direction of propagation of each cigenmode.
According to this criterion, the streamwise wavenumbet of the upstream (downstream)
propagating eigenmode should belong to the lower (upper) halfplane for a sufficiently
large imaginary part of the frequency. Specially conducted computations show that the
root lying entirely in the lower half plane at real frequencies correspond to the upstream
propagating wave, and all other modes propagate downstream with one of them being
unstable. In particular, the stationary mode of Neiland-Brown and 5tewartson propagates
in the upstream direction.

Another important consequence of (4.11) is that the growth rate of the unstable
eigenmode goes to infinity as the wavelength decreases. In fact, realistic physical systems
do not contain infinitely fast growing modes, and the present situation is a result of
simplifications made in the asymptotic limit considered. Thus, the possibility of well-
posing of the forced problem requires additional investigation.

4.4.2. Analysis of the initial boundary-value problem

In typical formulations of the forced problem, the large time behavior of the boundary
surface is assumed to be harmonic. This implies that the function f(afl,, ) is analytic
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with a simple pole at some real frequency o = wo0 > 0. To provide the existence of the
solution of the forced problem which is equivalent to convergence of the integral (4.6),
the class of the surface shape functions is restricted by imposing limitations on their
decay in wavenumber space. Properties of the solution for this set are investigated in
what follows. Implications of relaxing these limitations are then considered. For
simplicity, the special case of shape functions of compact support in the b-direction

f~cr,13,Co) for I1 < f3,
f3,( a4, w~) =

0 for 10l>fi,;/3, .-- + as n -oo. (4.12)

is studied. Within this clas. of functions, the infinitely fast growing waves are excluded
and the solution does exist. The region far downstream from the source of the
perturbations where the unstable eigenmode dominates is now considered. Accordingly,
only the contribution of the unstable eigenmode is important. For convenience, the order
of integration is reversed with respect toa ando), and the integrals with respect to each
variable are considered successively. The first integral may be estimated as

F'.xf (a,/3 ,Co)D-'(aP,w)da -

2iri exp(ija, X)f~a1 ,fl,wo){Da (a1 ,43, Co)}' (4.13)

Here a, = a• (, co) is the root of the dispersion relation corresponding to the unstable
mode. The next integral with respect to the frequency contains contributions of the shape
function pole at cw= c0 and the branch points aD/ ao= 0. Dividing it into the time-
harmonic contribution written in an explicit form and a remainder term I,, gives

fcexp(-i(OT+ iaX)f(a• ,/3, o){D.(a,,,wW))- dc)

-21exp(-iwOT + iaoX) resjf(a,ofl. cqO)j(D,(aj,oP,,0oJ }" + I,, (4.14)

where a,, c(I (,coo). The first term of the representation (4.14) includes only the
modes with bounded growth rates so that its behavior is regular as P3 -- am. The second
term contains the modes growing infinitely fast as /3 -. -.

At finite X and T, I, in (4.14) can be estimated approximately by the method of
steepest descent assuming the spanwisc wavenumber b is large. In that limit the
eigenvalue is expanded into the descending power series in j3

Wo = PQ; a, = flAJ() + PUA I+ .... (.5

where the coefficients Ak are described by the implicit equations obtained after
substitution of the expansion (4.15) into the dispersion relation (4.7)
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(I + A0, )Ao + '(sin 29Ao, - cos 2 ) =0, (4.16a)

A,-(A- 1)/!2+2cos 2 0/AO) -A'(-i) 3 1 2 (A2+1)= 0. (4.16b)

There are three branches of (4.16a). The branch of interest here is confined within the
finite region (cf (4.10))

-cot 8 <A0 < cot9O,IAl< *. in -- < <oQ . (4.17)

The location of the saddle point in the co-plane is determined from

d(aX - OMT) da = 0.

This gives

+(4.18)

where the expansion terms arc obtained from conditions

dAo 1df2= T / X,fI2 =-rA /d {d2A0 /d }"4 , (4.19)

with all derivatives taken at LI= fý. Elementary analysis of the conditions (4.19) with

(4.16) shows that the saddle point exists at TIX< cos2 0, and its contribution is
exponentially large, i.e.,

I, = O(expfCp3 12 D, as 1P -,, o;X > T / cos 2 9, C > 0. (4.20)

In the region X < T / cos 2 0, the saddle point contribution is absent at large b and the
remainder part 1, of the integral defined by (4.14) should be evaluated at finite values of
P. For X and T large, I, is evaluated from the contribution of the branch points
(aDI aa = 0) which are closest to the real axes in a- and a -planes. If position of these
points is denoted as

ar,, (P), o),,)

the value of I, is roughly expressed by

I, = O{exp[Im(nw, (P3)T - a, (#3)X]). (4.21)

This contribution represents a vorticity spot appearing when the oscillator starts its
motion. This effect was considered in detail in [25] for two-dimensional subsonic
boundary layers and in [22] for the three-dimensional case. All branches occur in the
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lower half of the a - and w -planes and do not intersect the real axis, so that the vorticity
spot is convected downstream with finite velocity. The present case differs mainly
because some of the branch points approach zero from below as /.-. 0. However, they
do not intersect the real axes so that

Im ob, 50,Imab, _<0,Irlo1),,/Imaý,Ž>cl, >0 (4.22)

Behavior of ab, W& and Im 0C, / Tm ab, versus / for the first branching point. of this
kind is shown in Fig. 5. Relations (4.22).imply that 1,represents disturbances moving

downstream with the finite velocity. On .a ray XI T =c< I /cos'2  , (Case(i)) the
disturbances are growing not faster than exponentially and'are bounded at any P3, while
for XI T> I / cos 2 9. (Case (ii)), they are unbounded as /--4 in agreement with the
formula (4.20).

The last integration in (4.6) with respect to the spanwise "wavenumber gives a finite limit
as /,, -- in Case(i) and generally has no limit in Case(ii)*. Therefore, the asymptotic

regime considered is applicable for the region X/ T < I/ cos2 6 only. The perturbation
field further downstream requires a special analysis of the high frequency eigenmodes.

For increasing time, the vorticity spot displays far downstream and the perturbations field

consists of time-harmonic oscillations only. Thus

p " expis3Z + ia1,X - i(OwT] res [f(a101 3,.) ,)](D.(a,0,P, o,0)V'dfi

X -. +c*,XI T< c,.. (4.23)

The distribution of the imaginary part of alo versus P3 is shown in Fig. 6 for different

frequencies. When the frequency is small, there is a minimum of Im atjo at finite P3. If the
frequency exceeds some critical value o (--0.30 for air, -0.78 for helium), the
minimum disappears and Ima,, tends monotonically to its lower boundary asP-- ,.
Accordingly, the solution behavior is different for both cases.

Estimating the integral (4.23) by the method of steepest descent on a ray Z = Xtan p, the
position of the saddle point is determined by a condition

d(ao +P tan q) i d --0, (4.24a)

which is equivalent to Values of a,,,P,3 corresponding to the saddle point can be

calculated from (4.24h), and the growth rate a can be determined along the ray
considered to be

"Even If the shape function is rapidly decaying in P -direction so that the integral exists as /3n -- , the
temporal growth (if the solution is faster than exponntial and the application of the Laplace transformation
is not Correct
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o"=-Im[a,+P, tan (]. (4.25)

SC.18 1 f229

tO01

-0.001

-0.02 - Reca

-0.003 -
Ima

0.004 I ,

0 0.01 0.02 0.03 0.04 0.05

0

-0.01
-0.02 Rea

-0.03

-0.04

-0.05 Ima

"_3.06 E l i I ,
0 0.01 0.02 0.03 0.04 0.05

P

5m00nc U I' ' IIm OA/M a 50

400

300

0 0.01 0.02 0.03 0.04 0.05

Fig. 5. Location of the first branch point (a) Re a and Im a vs. P, (b) Re w and 1mo)
vs. P,(c) lmw/Rc w vs. P3.

4-25



SC71062.FTR

0.001 '.13271 022m

(1 = 0.05

0.1

-0.001 0.15

Ima -0.002

.-0.003

-0.004 0.3
0.30

• "•~-.005 f I .. [. .. ! ,, , |] ,

0 0.1 0.2 0.3 0.4

Fig.6 Tmar vs./3 for unstable mode at different frequencies ; c =.05,.15, .30.

dalo dfJ + tan p= 0. (4.24b)

If there is an angle (p. of maximum amplification, the relation
dc / dqp = Im(dp, / dr dalo / d/ + tan 4p] + ,cos; 9) =Oat q) 'P. (4.26)

holds. Combination of (4.26) with (4.24b) leads to the conclusion that on the ray of
maximum amplification the saddle point coincides with minimum of the function
Im ,0(P) at real P3. Results of calculations of the angle 9, and the corresponding
growth rates are given in Fig. 7. For frequencies below the critical value a *, this angle is
different from zero so that the far field disturbance distribution consists of two Gaussian
humps in the spanwise direction at Z=±Xtano0, with typical width O(-47X-). Thcir

maximum amplitude is

p - [( /a,"(I,)X]"2 exp[iaoX +ipZ - io.,T] x

res(f(ao,p,,, o) /{D. (a., P,w.o), 41 4p. (4.27)

The case W. > 0 * cannob be considered in the same way as previously, and requires a
special analysis. For this case, the main contribution in the integral (4.23) is given by the
most unstable modes now concentrated at the large /. The approximate form of the
eigenvalue in this region is

4-26



SC71062.FrR

a0 =a,(a 0 ) f-'2 a, +... (4.28)

where the terms of the expansion are obtained from

DO(aa)i (iaO)"'{Ai'(-zO)}jf.i(z)dz -cos 2 9, zo = ioJ '(ia0 )'

at = -au, / Do(ao). (4.29)

Dependence a0 on the frequency is shown in Fig. 4a as the limiting curve as/3 -• *. At
the low frequencies (the neutral frequency for air o,.=O.116, for helium o.--0.303), such
limiting modes are stable, while at high frequencies the growth rate is unbounded. Due to
the absence of the minimum in the distribution Im a,,(P3) the unequality

Ima, >0

holds. For this condition, the contribution of the region hina, > 0.in the integral (4.23) is
exponentially small, and the approximate representation (4.28) can be used in the whole
region of integration. Taking for simplicity the residual of the shape function equal to one
(8-function shape oscillator in the physical space), the solution can be written in the form

p - exp[ia0X-iW0 T]J(Z,X) I {D0(a0 ) /au)'

J(Z,X) = J ex~ifpZ + 40 "'Xjdp / P'. (4.30)

Here
D = Iao) 2 Do+... a .. The value of J at Z =0 is finite

and as Zd .-- it decays exponentially for Imal >O.Thus

J.I 6ai X)" exp[3iZ3X/X'(a 14)"'1].

Therefore, at supercritical frequencies () > 0)0, the perturbation is concentrated in a thin
region near the x-axis with a typical width o(1 / 47). A qualitative picture of the field
of perturbations is shown in Fig. 8.4.5

4.5 Dlcusslon and concluslons
The foregoing has shown that the strong interaction hypersonic boundary layer subject to
surface cooling of the surface is unstable. with respect to low pha.se speed (low frequency)
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viscous eigenwaves. This does necessarily preclude other types of instabilities. On the
contrary, in addition to inviscid inflectional instability of the transitional layer considered
before In I I], another inflectional instability should occur, because for sufficiently strong
cooling a generalized inflcction point appears within the boundary layer. (This can easily
be concluded from analysis of the mean flow asymptotics near the wall). Results of
computations for air presented in Fig. 9b (see the Appendix) indicate that such a point is
located approximately in the middle of the boundary layer. Moreover, as follows from the
analysis of [21, even for the hot wall and realistic gas parameters (t,),0) the mean flow
velocity tends to the freestrzam value from above, and an additional inflection point
exists near the upper edge of the boundary layer. Our computations (see the note in the
end of the Appendix) show that this point is extremely close to the boundary layer edge
and must be obscured by the transitional layer for realistic Mach numbers.

In any case, these inflectional instabilities have a typical frequency not less than the ratio
of the freestrearn velocity to the thickness of the boundary layer in the strong interaction
region. Typical frequencies associated with transition to turbulence are based on the
boundary layer thickness far downstream and are much smaller than these inflectional
instability frequencies. Therefore, the viscous instability considered may have more
practical interest even if its growth rate is smaller than the inviscid one. This conjecture is
supported by the experimental study by Holden [18,26) of the hypesonic boundary layer
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on the cooled cone at zero angle of attack. He observed the occurrence of highly visible
waves in the region where the ratio of thickness of the shock and boundary layers was
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- 10 (under strong interaction it is - 1.7 for flat plate in air). These waves were three-
dimensional, had a continuously growing phase speed from 0.5 at the start of observations
up to 0.85 at the end of transition. The effect of three-dimensionality is believed to be
related to the type of instability considered here.

Another interesting observation was made in [19] in the study of hypersonic transition
induced by a solitary roughness. Therein, it was found that if the distance between the
nose and the roughness is less than some critical value, the wake behind the roughness
has a thread-like form, and bursting into developed transition occurred far downstream.
Our analysis shows that if the frequency of the source is less than some critical value, the
far downstream perturbation field is like a swallow tail. For the high-frequency case, it
narrows, with the width of the tail being inversely proportional to the square root of the
distance from the source. The downstream growth rate increases with frequency (cf
results of calculations in Fig. 7 and qualitative picture in Fig. 8). Thcrcfore the high
frequency disturbances must dominate. Accordingly, the wake behind a point source with
a broad spectrum of frequencies must concentrate near the central axis of the source, in
agreement with the previously mentioned experimental result.

The physical mechanism of instability obtained is close to that analyzed in (12] for
moderate supersonic speeds. In this case, instability occurs for the waves directed outside
the free-stream Mach cone which are therefore effectively subsonic and qualitatively obey
the same mechanism as Tollmien-Schlichting waves in incompressible boundary layers.
For the case considered here, the disturbances are confined by the boundary layer and do
not penetrate outside it, so that the interaction is realized between the viscous sublayer
and the main part of the boundary layer. Hence, the role of the freestream Mach number
is replaced by some effective Mach number averaged across the boundary layer. Since the
local boundary layer Mach number is of the order of one the Mach cone angle takes on
finite values different from ir /2 and independent of the free-stream Mach number.

The important difference from the moderate supersonic regime is the presence of the
infinitely fast growing modes in the short-wave limit. Therefore, the forced problem is
well-posed on the class of shape functions of compact support in Fourier space. For a
time-harmonic source switching on at some instant of time, the fast growing modes
contribute to a vorticity spot which originates at the start of the oscillations and is
convected downstream with finite velocity. Continuation to a wider class of the shape
functions can be made in the region of physical space passed by the high-frequency
vorticity spot and containing the time harmonic component only. The high-frequency part
of the vorticity spot cannot be described within the present framework but needs
consideration in another asymptotic regime.
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4.7 Appendix. Undisturbed boundary layer.

In terms of the physical variables the system of equations controlling the mean boundary
layer flow is

IF =p3o (3y3%0 - 4Eiv) (A.1)

T." p3oU3o - (T 14)uý - Po /2y ((T3,)`u'30o)

-(' / 4)T •+PoU•(Y- 1)1 2 = (y- I)T3o(u30 )2 + or' (rT,)'

P:JT30 = P0 .

Here, T is a stream function introduced for more convenient numerical integration, and
prime denotes differentiation with respect to y,. Boundary conditions are

T ulo = T3o =0 at y3 =O (A.2)

'V -4 00, V30 = 3y., / 4 ,u10 =1, T,, = Oat y., -1 .V V

with the location of the upper boundary y.l determined simultaneously with the solution.
* The pressure p. is not a prescribed value but is determined only after coupling the

problem (A.1),(A.2) with the problem for the inviscid shock layer. This layer is confined
between the upper edge of the boundary layer Yo and the position of the shock wave
YSI > y3o. Due to self-similarity, its profile is also described by a system of ordinary

, differential equations which' are the reduced classical ones of hypersonic small
perturbation theory, and may be treated as a locally uniform. Boundary conditions behind
the shock wave are the Rankine-Hugoniot relations and the main-order matching
conditions with the boundary layer which are continuity of the pressure and vertical
velocity.

For complete formulation of the boundary layer problem the detailed structure of the
shock layer flow is not necessary. Only an additional relation between the pressure and
the vertical velocity at the upper edge (the global interaction law) is sufficient for
obtaining a unique boundary layer solution. For evaluation of the mean flow in the
Region 4 lying at the bottom of the shock layer, the location of the shock wave is
required. Numerical data appropriate for these both purposes were obtained in [15]for
mono- and diatomic gases. Their scaling formulae (2.1) and solution representation
(2.9),(2. 10) gives

po {v3o(y3o)}':=(i/2)7r(r+l)P0 (O){Vo(O)-z, (A.3)
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Y31 /y3 = (I 2Xy+ I){VO(0)}"

where Po(0), V0(0) are their scaled pressure and vertical velocity components at the

bottom of the shock layer. Substitution of their numerical values gives tht jesulis in Table
1. For comparison the analytical result for Newtonian approximation (y-4 I) is also
shown.

Table I

molecular structure . po{(V3y )['2 Y3 / Y3

one-atom 5/3 3.098 2.086

two-atom 7/5 1.990 1.691

1+0 2/3 1

Noticeable differences in the global interaction law for the different values of the specific
hheats ratio appear because our primary scaling does not involve this parameter.

For integration of the problem (A.1), the boundary conditions (A.2) must be replaced by
their asymptotic counterparts. Conditions at the wall follow from matching with the
solution (3.7) within the buffer layer

T.v, = ((;(I + a)yj (A.4)

u30 = (Cl / Cq)(C2 (0 + (O)y3

Asyrnptotics near the upper edge were obtained "21 using stream function as the

independent variable. In physical variables, they take the form

T30 = Const0(y• - y3)VI-,, (A.5)

u 30 =1+ ConstI (yX Y, )2111 4,,)

where

Consto = {po0 (l + 02)(1- a)"-' ,I +(Y- IXI - )j)yI]/ 4) }, 'o, (A.6)

Const, -(I - a){•y + (y - 1)(l - w)]'1l1- a(y - 1)(l - w0) I y,'Const 0.
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Calculations were conducted by the Runge-Kutta method with variable step of integration
for two sets of the gas parametersao,y,, corresponding to helium and air. Numerical
values characterizing the mean flow profile are presented in Table 2

Table 2

Gas, o' CI C2 PO Y30 Y31 08

He 2/3 5/3 .647 .4294 .1334 .4538 .5103 1.064 52.94

Air .72 7/5 3/4 .3895 .1328 .2151 .4384 .7413 61,67

Actually, these data are not far from the ones obtained in (3] for the Chapman viscosity
law and Prandtl numbcr equal to unity. The velocity and temperature distributions for air
are presented in Fig. 9a, and distribution of the value u'(y3)/T T3,' 3) characterizing the

location of the generalized inflection point is plotted in Fig. 9b. Behavior near the
04 1826E 0o2220.4 , t ' J ' J ' J ' t .. .' ..

(u30-1) * 108

"T30 * 108

0.3

0.1

0

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

(Y3-Y30) * 107
Fig. 10 Comparison of calculations of mean flow velocity and temperature with

a.ymptotics near boundary layer edge. (solid: calculation;dashed: asymptotics).
(i): (30. - I). !0 ;(ii)T. 10 4 vs. (y. 3 y.,O)61O

4-36



SC71062.FTR

boundary layer edge and comparison with the asymptotics (A.5) are shcown in Fig. 10 in an
enlarged scale. Note that in agreement with the [2] the velocity approaches unity from
above (Constl>O) so that there is a local maximum of the latter within the boundary
layer. Its position is extremely close to the upper edge

u3 - I l 1.07.-T' at y3 , - y3 -6.96.10-6

and is not resolved on the large-scale figure. The mean flow for helium exhibits the same
qualitative behavior.
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5. Unsteady Newtonian thin shock layers and hypersonic flow
stability

5.1 Introduction
Although the stability of high speed floivs has received much attention ii the recent
literature, major complicating aspects have not been treated in a unified way. These
features include the combined effects of the finite shock displacement on the boundary
layer, the nonparallelism of the flow and the vorticity introduced by the shock curvature.
The relevant structure of the shock and boundary layers has been treated in (1]-[9]. In [6]
and (7], the aforementioned stability issues were discussed within the Hypersonic Small
Disturbance approximation for the inviscid deck strongly interacting with the hypersonic
boundary layer. Equations of motion for the mean and fluctuating small amplitude flows
were analyzed. Because of nonparallelism in this framework, the spatial part of thc waves
cannot be treated by the usual Fourier decomposition and an initial value rather than
eigenproblem for spatial stability is obtained. The initial value problem leads to partial
rather than ordinary differential equations that require a numerical marching method for
their solution. Results indicate that the specific heat ratioY plays a major role in the
stability of flow since it controls the reflection of waves from the shock and the radiation
of energy in the shock layer whose thickness scales with 1 -1.

Early experiments such as those described in [2] showed that for a practically ir teresting
class of flows, the shock layer becomes very thin compared to the boundary layer near the
nose of hypersonic flat plates. This feature and the desire to further understand the shock
and boundary layer structure encourages the use of the Newtonian approximation y -4 1.
The connection with flow stability motivates the study of this approximation in an
unsteady context. In this chapter, limit process expansions will be discussed relevant to
unsteady viscous interactions as a prelude to the analysis of hypersonic stability and
transition. The application of these limits is an unsteady extension of the steady state
analysis of (3]. Although the focus here is the treatment of viscous interaction, boundary
layer stability, receptivity and transition, the results derived are useful in inviscid
hypersonic unsteady aerodynamic methodology and load prediction as well.

5.2 Analysis
Figure 1 schematically indicates strong interaction flow near the leading edge of a
hypersonic body. The viscous boundary layer which is usually thin, occupies an
appreciable fraction of the distance between the shock and body that will be considered
without undue loss of generality a. flat plate in what follows. Accordingly F(I,i) = 0, in
the notation of Fig. 1. The results in this chapter will be expressed in terms of the
boundary layer thickness function A(i,i)-O, which in the interpretation mentioned in
the Introduction could be the body shape in an inviscid context.
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The unsteady form of the Hypersonic Small Disturbance Theory (HSDT) equations [9]
are applicable and are obtained as in [7] from limit process expansions of hatted variables
defined as quantities normalizcd by their freestream counterparts, with p,T,u,v,/2 the
density, temperature, horizontal, vertical components of the velocity vector, and viscosity
respectively. If the freestream density, pressure and velocity are denoted asU,p.and
p.respectively, then a pressure coefficient used in these expansions is defined

as (p-p_)/p. U'

- &g 8Fft)

Fig. I Schematic of hypersonic strong interaction flow.

With these definitions and the coordinate system in Fig. I as well the normalization of the
Cartesian dimensional coordinates iand Y to the unit reference length L and the
reference time scale L/U for the time i, unbarred dimensionless normalized counterparts

of these independent variables are defined. If M. and R. are respectively the freestream
Mach and Reynolds numbers, and 8 is a characteristic flow deflection angle, then the
expansions are

AX,:(,y,; M.. R.. .) = y,,(. t; H. Y)+- (. 1)

T= -.. (1.2)
(1.3)
(1.4)

where y = 7/( L.b). These expansions are valid in the HSDT limit

x.Y.I,Hua-I arefixed as5--€O,

where H is the hypersonic similarity parameter.

5-2



SC71062.FrR

In (7] and elsewhere, e.g. [1], [8] it was shown that 8 C £'/6 where -- Re*' - 0 for
strong interaction flows.

Substituting (L. 1) - (1.6) into the Navier Stokes equations and shock conditions gives the
following HSDT unsteady equations and boundary conditions:

S~(1.8)
(7dtd d dp

=( + ' ) I -" 
(1.9)Tt Tx + ady

(a d d Yp+ H/y~
+ a p+.( 10.10)

In what follows, the boundary layer will regarded as an effective body, since in the strong
interaction regime, the density of the flow approaches zero as the edge of the boundary
layer is approached[81, [1], and (4] so that the latter is streamline in steady flow. In
unsteady flow, it is plausible that it is a streakline. From Fig. I, denoting the ordinate of
this surface as y = 8A(.,j) then following [3] for steady flow, the body coordinates
introduced for later use in the Newtonian limit arc

y, = y-A(x,t) (I. i)
v =v-v, (1.12)
v, m v(x,•)- A) +z (1.13)
t" =r (1.14)

X'= X (1.15)
O y 5G= g-A. (A.16)

"The quantity v, represents the vertical velocity component at the boundary layer edge.
Equation (1.12) is derived from the property of this surface that it is a streakline.
Representing this line in the implicit form B(., J') =0, where

B = y-A(,t)1=,.7)

the streakline property can be expressed as

B5 +4 VB.0, (1.18)

where 4 denotes the flow velocity vector. Substitution for 4 (1.4) and (1.5) into (1.18)
gives (1.12).
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Defining the convective operators as

D +(1.19)

Sd d d d d
E +•+v, (.-+g+v- . (1.20)

the HSDT equations written in these coordinatcs are

oa+(•',. =o(1.21)

Ev.+ D2 A = a-1 p). (1.22)

<(P+ ly) 0 . (1.23)

If subscript S denotes evaluation on the shock, the shock conditions in these coordinates
are

2 -HYS + I v(G+ A)- D(4'A]- DA (1.24)

PS = 2 iD(G+A) 2 -H] (1.25)

aj = (1.26)

y+1 Y+1l

Recognizing that the shock layer is O(y - 1) as y -. I ,and H - -, even in the unsteady
case, the following Newtonian limit proce.s and expansions are used:

• H y"1

NU rx'. - are fixed as . --. o (0.2
A 0y+

p(x'/,y*t) = •(z.,'+. (1.28)

S= .(1.29)

V = + (1,30)
(X Y') A(X') + I(1.31)

where N is the Newtonian similar;- parameter.

Substitution of (1.28) - (1.31) into (1.21) - (1.23) and (1.24) - (1.25) as well as retaining
like orders gives the following unsteady Newtonian equations and shock conditions:
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'EC7 + =-i0 (1.32)

D f (1.33)
r2 1

D A+1fP =01 (1.34)

P = 0 .( 1 .3 5 )

On the shock,

NVs = 7(x'S(xXt)t) = n--g DA (i1.36)
,Ps :(DA) (1.37)

(DD)2

a -i (1.38)

Eq. (1 12) implies the tangency relation

D(x"At*)= 0. (1.39)

The initial boundary value problem comprised by (1.32)-(1.35), (1.36)-(1.38) and (1.39)
can be simplified by an unsteady extension of the Von Mises transformation. Introducing
an unsteady stream function V

=. - D =d". (1.40)

an unsteady extension of the Von Mics mapping is considered in which

with characteristic coordinates defined as

x'+' X, •x-t"
2 r 2 (1.42)

the differential operatorm map as follows:
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D=- -=a-- (1.43)

In characteristic coordinates, the convective operator E is expressed as

E a =-- 6i72-. (1.44)

For 0 =0.

(1.45)

In this coordinate system, the Newtonian shock layer equations and shock conditions
become

=I iT,, (1.46)

VW +.• =0 (1.47)

7, =(1.48)

-Z= K(x" - t'. V) (1.49)
a

Vs= D(1- .(150)

- -2 (L51)

-2

The solution integral given by (1.49) can be interpreted as plane entropy waves

convecting downstream at the freestream speed. If the initial state is

K(t(xO,V) f (x,), (1.53)

thcn at any time to,

K(x',tV) = f (x - to.W). (1.54)

To match the shock and boundary layers, an "interaction law" relating the pressure and
normal velocity at the boundary layer edge is required. This matching was studied by
Lee% (5]. Stewanson 181. Bush (I]. a.s well as Lee and Cheng [41 for steady flow. The
unsteady case has apparently not been analyied. The interaction law can be obtained from
integration with respect to V of (1.47) which gives
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S-Vv+ , (1.55)

where , = P(x',t',0) is the pressure at the boundary layer edge. The quantity v. can be
obtained from the second member of (1.43) specialized to the shock value of the strcam
function V., and the shock relations (1.50) - (1.52). An integration with the assumption
that the shock intersects the boundary layer and body at the nose gives

Y= A

(1.56)
Evaluating (1.55) on the shock gives an unsteady extension of the Newton-Busemann
pressure formula. This interaction law is

= (DA)' + AD 2A. (1.57)
Evaluation of K at the shock gives

Ps = N +(DA)Z = K(x" -tw) (1.58)

which with (1.56) gives a pair of relations which parametrically defines the spatial
entropy distribution at each time instant along the various instantaneous streamlines. The
mapping y -. V is obtained from the first member of (1.43). as well as (1.53), (1.55),
and an integration as

(v K(x" - t', V')Y=J - D'A-d( 0 I *,x ). (1.59)

Evaluating (1.59) at V, gives the shock shape

( )= (xt,A). (1.60)
The density is obtained from the entropy integ.al (1.53) and (1.55) as

K("' (1.61)

Writing K(x" - t'.W) a Q(q7,V) , the vertical velocity is derived from (1.55). the
boundary condition (1.39). and integration of (1.46). This gives
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From the aforementioned attachment of the shock to the body leading edge property
implied for continuum flow, evaluation of K at the nose x = 0 and the shock relations
(1.50)-(1.52) give the density on the boundary layer edge to be

AD' + (DA) 2  (1.63)S=N + (DA)!ý" 1.3

5.3 Computations and results

The mapping 5 - V given by (1.59), can be expressed in explicit form convenient for

numerical calculations. 1ntoducing independent variables x = x" and s = x - t" gives

dip(s =cons) = -dr +--.d( = DA(x,x-s)dr. (2.1)
dX a

Substituting (2.1) into (1.59) and accounting for (1.55) and (1.58), gives

Y ,I)A2 (x,,t)-[, x,. X + N, (x) ,t+,- A xt)]a(~~x 22
= -x dx2 (2.2)

A,(x,1) a DA(x,r), A2(xt) = D2(x,t). (2.4)

The flow temperature T, pressure p ,and density a' at the point (x, Y) and the time t are

'=A,(Xt"x' + t - X) + N (2.5)

= •,(x.t) - A:(x.t)tp (2.6)

a I (2.7)

The shock deviation is evaluated by the integral (2.2) at the upper limit of integration x .
Equations (2.2) and (2.3) indicate that the stream function V and the temperature Tat the
point (xJ) co iTespond to thoc;e just behind the shock at the crois section x, where
y = (x,,).

If the boundary layer edge A(x,t) is known function, an unsteady flow field within shock
layer can be easily calculated using Fq.s. (2.2) and (2.5). As an example, conider the case
when the boundary layer thickness ,. is much less the body thickness. Then

A(x,t) a F(x.1) + 0(8). 8 --,1 -- 0. (2.8)

Unsteady perturbations prtxduced by the body surface in the zeroth-order approximation
with respect to the smill parameter 8 , will be considered. Feature% of the flow field will
be discutsed for the body shape examples
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A x + Axe",'12 cos(or) (2.9)

A=x+A--x sin(a - (.a). (2.10)
x+XO

Shape (2.9) describes a wedge of a half-angle 8 with a 2-D hump placed at a distance
xofrom the leading edge and oscilla!ing with frequency w and amplitude A. Shape
(2.10) describes a wedge with a superposed traveling wave modulation starting near the
point x. and propagating downstream with phase velocity c = ;a , the wave amplitude

achieves the constant value A as x -- ,.

Figures 2a and 2b illustrate a flow field past the steady hump specified by Eq. (2.9) at

x,=l with amplitude A=.15, for the Newtonian parameterN=O. For clarity in the plots,

the temperature profile T(Y)at cross sections x. (5/12)k, (k = 1,2,...) are plotted with

constant shift in the abscissae origins At --0.5 corresponding to the different k. Figure
2a shows that the hump causes local shock perturbation damping in upstream and
downstream directions. From Fig. 2b, it can be deduced that the curved portion of the
shock induces a non-uniform temperature distribution across the shock layer which can
be interpreted as an entropy wake convecting downstream along streamlines. If viscous
dissipation is weak, the entropy wake is preserved in the far downstream flow field,
although the shock and pressure perturbations are infinitesimal.

Similar data are shown in Figures 3a and 3b for the hump oscillating with the frequency
w =3 and the amplitude A =.02. The shock perturbation shape is close to that for the
steady case having an instantaneous body surface of the same shape (cf solid curves in
Fig. 2a and Fig. 3a). Such a quasi-steady behavior is due to the infinitely large'speed of
pressure disturbance propagation across the shock layer according to Eq. (1.34).
However, the temperature and density disturbances induced by the curved ihock convect
downstream at frecstream speed (see Eqs. (1.32) and (1.34)). Because of the time lag and
interference between entropy perturbations, the temperature profiles are quite different
from those for the steady case (compare Fig. 2b and Fig. 3b). They oscillate across the
shock layer, with decreasing wavelength as frequency increases.

In both steady and unsteady cases the temperature profiles have inflection points, that can
generate an inviscid instability of the entropy wake for disturbances with short
wavelength and high frequency, (see [ 101). It is assumed that a steady or unsteady hump
placed on the foretody of a hypersonic vehicle may be u.sed as a boundary layer trip for
the shock layer flow captured by the inlet. The inflectional entropy layer may amplify
short-scale disturbances due to inherent instability mechanisms. Such amplification can
be enhanced by interaction of disturbances with inlet shocks, (see [f1], and f121).
Ultimately, this process may lead to formation of turbulent wakes. A similar effect might
be caused by blowing/suction through the portion of the forebody surface. It Il
conjectured that such Inslabilities and tripping mechanism described above can be
useful for initiation or enhancement of hypersonic scramJet combustion r rocesses.
Figures 4a and 4b illustrate flow field perturbations caused by the vibration wave of
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Shape (2.10) for co l0,a = 5, A =.01 and xo=l. It is evident that the shock deviation
grows downstream and ultimately becomes a spike, consistent with the nonlinear nature
of the disturbance evolution. Additionally, the temperaxure profile-s are qualitatively
similar to those over an unsteady hump (cf. Fig. 2b and Fig. 3b).

As shown in Fig. 5a, the amplitude of the shock vibration wave becomes infinite at a
finite distance from the starting point x.. The wall pressure is equal to zero (see Fig. 5b)
at this location. Since this is a nonuniformity, the present asymptotic model is inadequate
to describe the flow field near it. However, it is clear that the singular region is identified
as a function of vibration wave characteristics. The vanishing wall pressure vanishing
here can cause an inviscid separation from tne body surface of the thin shock layer. This
process resembles shock separation from the upper edge of hypersonic boundary layer on
a flat plate at zero angle of attack (see [13] signifying that even small vibration waves
propagating along the body surface can initiate a global reconstruction of the flow field.

5.4 Summary and conclusions
In this phase of the rescarch, Newtonian thin shock layer theory was extended to unsteady
flow. In earlier work for steady strong interaction flow, the boundary layer thickness
A - x 4 based on the similarity of the initial boundary value problem and integration of
the boundary layer continuity equation. An integrodifferential equation for A arises that
admits a similarity solution with the x 3 scaling. The literature assumes either a Tangent-
Wedge or Newtonian impact theory interaction law for the pressure in these solutions.
From the present work, It appears that the proper asymptotically consistent
procedure is to Include the centrifugal term in this law (second term in the right
hand side of the steady state version of (1.57)).

Computations performed in a framework of the unsteady Newtonian thin shock layer
theory reveals the following features of inviscid flow field:

A local steady/unsteady hump induces stcady/unsteady entropy perturbations
propagating downstream with freestream velocity. It generates inflection points in the
instantaneoMs shock layer profiles. According to inviscid stability theory, these
profiles should be unstable with respect to short wavelength disturbances.
Down.otream amplification of inviscid instability may cause formation of turbulent
wakes within a shock layer. It is plausible that such a tripping mechanism can be
exploited in forebody-inlet design to initiate or enhance combustion process.

* Surface vibration waves of finite amplitu('- cause strong shock perturbations that
gow downstream. These ultimately form spikes due to nonlinear effects. The infinite
spike occurs at a finite distance from the initial vibration point. This singularity could
lead to scparation of a thin shock layer from the body surface and global
reconstruction of the flow field within the shock layer.
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Fig. 2a. Shock deviations caused by steady bump, A =.15, xo - 1,.o 0, N = 0.
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Fig. 2b Temperature deviations caused by steady bump, A =.I5, 5. = 1, = 0, N =0.
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Fig. 3a. Shock deviations caused by unsteady bump, A =.02, xO =, =5, N =O.
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Fig. 3b Temperature deviations caused by unsteady bump, A =.02, x. = Io = 5, N = 0.
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Fig. 4a. Shock deviations caused by traveling vibration
wave, A =.O1,x 0 = l,w= 10, N =0,a =5.
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Fig. 4b. Temperature deviations caused by, traveling vibration
wave, A =.01, xO = 1,w = 10, N = 0, a = 5.
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Fig. 5a. Shock deviations caused by traveling vibration

wave, A =.Ol, x. =.2, w =5, N =o, = 5.
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Fig. 5b. Temperature deviations caused by traveling vibration
wave, A =.O1, xQ =.2,w =.5, N = 0, a = 5.
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6. Similarity Methods for Hypersonic Transition Prediction

6.1 Introduction

Prediction of laminar-turbulent transition in hypersonic boundary layers is of critical
importance for aircraft and missile design [1]. Although considerable effort has been
invested in developing theoretical and computational methods to predict high Mach
number transition, a strong need still exists for approaches suitable for rapid response
design application. To fill this need, empirical criteria based on wind tunnel and flight
experiments are currently the main workhorses in engineering practice. Much. of the
difficulty in constructing a rapid design oriented meohod is due to the unique features of
the hypersonic stability and transition problem that include strong non parallelism and
shock effects. In spite of the success of e'mefods such as (2] below Mach 12, these
aspects are significant at higher Mach numbers.

In this chapter, similarity methods will be used to indicate a potentially new useful
procedure for preliminary design and fast tradeoff studies. These methods have the
potential of dealing with some of these difficulties. The theoretical basis for the
similarity method will be given and an application to hypersonic cones provided. Finally,
possibilities for generalization of the method to more arbitrary shapes will be discussed.

Since the problem of disturbance evolution contains the large Mach and Reynolds
number parameters, it is natural to use asymptotic methods in predictive models.
Asymptotic theories of the vorticity mode as well as cross flow instability and Gbrtler
vortices as well as [3] are recent examples. Solutions from this class of asymptotic
models are limited in their applicability because of the restrictive asymptotic limit
processes used. Other asymptotic approximations provide more general applicability but
are also more difficult to solve. Even without solution however, such theories give
important similarity groups, if appropriate normalizations and nondimensionalizations
are used thatreflect the salient phenomenological scales. These groups provide the basis
for constructing similarity laws that not only can be useful for design of economical
experiments, but prediction as well.

Such a procedure will be used in this paper to investigate similitude of boundary layer
stability over nearly sharp, zero-incidence hypersonic cones. A similarity rule accounting
for viscous and compressibility effects is derived without solving the initial boundary
value problem. Predictions from the rule are compared with linear stability computations
as well as (Reentry F) flight data obtained on slender cones [4]. It will be seen that this
rule gives an extremely cost-effective and rapid extrapolation method of code or
experimentally derived data to other conditions.
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6,2 Similarity analysis

The unsteady disturbance field in a threc-dimensional hypersonic boundary layer will be
considered with the following assumptions: (i) The fluid is a perfect gas with constant
Prandtl number Pr and specific heat ratio 7. Denoting starred quantities as dimensional,

* = *T*
the viscosity-temperature law is p = T . (ii) The spatial scales of the disturbances

are of the order of boundary layer displacement thickness 5; the time-scale is " / U,
where subscript e refers to the upper edge of the boundary layer. (iii) Boundary-layer
disturbances weakly interact with the external inviscid flow and shock wave.

In the hypersonic boundary layer, the pressure is of the order of that of the external
inviscid flow, and the temperature is of the order of the stagnation temperature

* - (7- I)MT," This leads to asymptotic scaling for the flow variables within the

boundary layer: The full Navier Stokes equations written in terms of this scaling contain

only the lumped parameterR = E'*'R, where r << I and Re is the Reynolds

number based on the displacement thickness=Re = "Uop/p. The dependence on the
similarity parameter R is valid for strong, moderate and weak viscous-inviscid
interaction regimes. However, 3" and, as a result, the Reynolds number Re, are sensitive
to the interaction type. For example, the boundary layer on a flat plate has the
displacement thickness 6^ - x*"' for strong interaction and C - x"'2 for a weak one.

Outside the boundary layer, the disturbances are assumed to vanish and weakly interact
with the external inviscid flow . At the wall, the flow satisfies no-slip conditions,
temperature is assumed to be constant. The upstream and downstream conditions as well
as initial conditions for.the disturbances are also assumed to depend weakly on Mach and
Reynolds number. These additional provisions preserve the applicability of the R
similitude previously indicated. It is therefore clear that the similarity law

f =f(R,y,,P.) ()

holds, where f is any of the flow dependent variables, T, is the wall temperature ratio,

and fnsignifies a functional dependence that can be obtained from solution of the initial
value problem.

This similarity can be extended to the linear stability problem if a typical eigenmode
wavelength,X is of the order of the boundary layer thickness. If small disturbances are
assumed in the original form of the Navier Stokes equations before the previously
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mentioned rescaling is used, the general linearized equations (LSE) for small fluctuations
are obtained. Within the spatial and temporal scaling implied by the wavelength
assumption, the equations for the fluctuations depend again only on the parameters
y,7T, ,Pr and R, if further, their initial and boundary conditions are consistent with this
assumption. Therefore, the fluctuations obey a similarity law such as (1).

As an example, consider the two-dimensional vorticity mode (second mode according to
Mack's classification [5]) in the boundary layer on a flat plate or sharp cone. In this case,
the span component of the wave vector, f -0 and the growth rate o = --Irn(a) (a --the
complex eigenvalue). If the Prandtl number, specific heat ratio and viscosity exponent

TL
parameters Pr, r,o, as well as the wall temperature factor T= _T- arc fixed, where 7,

is the wall temperature, TL is the adiabatic wall temperature, the maximum growth rate

o(rl), (p = 0'6" / U: the non dimensional frequency) is a function of Reynolds number
Re and Mach number M,.

In Fig. 1, calculations for oa from a linear stability code are shown as a function of the
similarity parameter Rat M, = 7, 8, 10, 12 and 14. The following parameters were used
in the computations: Pr = 0.72, y = 1.4, T7 = 0.2 and w=0.75. The stability
characteristics have been computed by solving the eigenproblem for the LSE system of
equations [5]. In this procedure, the mean flow in the boundary layer was approximated
by the hypersonic weak interaction theory self-similar solution. Note that the similarity
given by (1) collapses the a.(Re, M,) curves to a,.(R) at moderate values of R, as
Mach number increases. At sufficiently large R, the curves tend to spread, because the
wavelength of the vorticity mode " <<6 and Assumption (ii) is violated. This is
consistent with the asymptotic theory for inviscid disturbances according to which the
vorticity mode is concentrated in a thin transitional layer at the upper edge of the
boundary layer. However, the region where similarity works well is sufficiently wide and
relates well to practical applications.

moII

Fig, I Maximum growth rate as a function of similarity parameter R at various local
Mach numbers M,.
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6.3 Application of similarity In hypersonic transition prediction

Hypersonic cones are used as a focus to explore the use of similarity in transition
prediction herein. Reference [4] provides transition data for a slender cone at freeotrcam
Mach number 20 during reentry from altitudes of approximately 30.480 to 18.288 kin,
corresponding to the region of freestream Reynolds number 6.56 to 52.5 x 106 per meter.
Experimental points representing transition onset Reynolds numbers Re,,, = U•X I •

(v:= kinematic viscosity) as a function of local Mach number M. are shown by the
symbols in Fig. 2 In the figure, I denotes the sharp cone, II signifies entropy layer
swallowing by the boundary layer close to the transition location and Ill represents
swallowing downstream of transition. The similarity relation (1) applies for Regimes I
and HI.

SC.1l¢4gA~o•

10l

2 -J , I • I l

0 2 AI 10 12 14 1i

Fig. 2 Comparison of present theory with flight experiment. Solid line: theory,
symbols: experiment.

Because of recession of the nose tip during reentry, the local Mach number at the upper
edge of the boundary layer depends on the nose-radius history. The maximum M,
corresponds to a sharp nose. As the tip is blunted, the boundary layer grows in a higher
entropy gas with smaller local Mach number. The transition Reynolds number depends
on the location of the region where the entropy layer is swallowed by the boundary layer.
More details are given in Ref. (6] of how this physics is related to the change in the
monotonic trend of the Regime Ml data shown in Fig. 2 . For Regime 1I, only local
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similarity rather than the global similarity (1) is valid that is associated with almost
constant boundary layer edge flow quantities. The latter corresponds to sharp cone
similitude at a given local Mach number, For this case, the flat plate mean flow viscous
interaction parameterZ-(y-l)M,3UR7 , (Rew U xu/1v), derived in Ref. [7] is
related to transition onset. The assumption of weak interaction Z << I is well satisfied by
experimental data of (4]. From [7], and application of the Blasius formula locally, the
boundary-layer displacement thickness 6%, local Reynolds number Re and similarity
parameter, Rare

lee

6 A = -A1p:x p:U:, (2)
I..

Re=AC 2 •R• , (3)
using the perfect gas law, energy invariant, and the previously stated viscosity-
temperature law, where A - the constant of proportionality in this law.

In (2) and (3), A is a weak function of M,. In the hypersonic limit, A is assumed
independent of M,. This approximation simplifies the prediction of the transition onset
location that can be estimated by thee' method. The amplification factor N for the two-
dimensional second mode can be represented solely as a function of the similarity
parameter Ras

* N(Ql,x)) J adx = adR,

S0

where a " o8. Applying the transition onset criterion N = N,,, where N,., is the critical
amplification factor that is assumed to be a constant for Regime III data from [4], the
corresponding similarity parameter A, can be obtained. According to (3),
Rex,, = S•'")A2 R,. Since N,., =const independent of Mach number M, and from
N = N,.,(R), R) also =const, independent of Mach number M,. Therefore, the
similarity rule

S~~(Re,1)2M.

is obtained on use of the definition of e and the fact that the other parameters are fixed.

Equation (4), shcwn in Fig. 2 as a solid line for W = 0.75, agrees excellently with flightdata and provides a useful prediction tool that can be applied for other zero incidence

cones. With (4), characteristics at new Mach numbers can be obtained from computed or
experimental points corresponding to a particular cone geometry and wall-to-freestream
temperature ratio.
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6.4 Diacusalon, future work and conclusions

Effort is in progress to extend the applicability of the similarity method to more general
shapes than cones and treat angle of attack cases. In this connection, it should be noted
that similarity gives a relation between the local characteristics of the boundary layer. The
simple form of the similarity rule (4) was obtained under the assumption that the mean
flow parameters at the boundary-layer edge are constant. Similarity appears also to be
valid for transition due to some local process that is typical of nonlinear by-pass
mechanisms. If transition depends on the disturbance streamwise history and the mean
flow has a non uniform distribution in the x, z plane, similarity can be used to relate
disturbance characteristics between two streamwise stations and account for the global
process leading to transition. From thee" method, the growth rate a' can be extrapolated
to the new set of conditions at each point using similitude. This can be used to determine
the amplification rate N to predict the transition Reynolds number. Since this approach
would be derived under the other general conditions used here it would not only be
applicable for more complicated geometries but linear and nonlinear regimes as well.
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7. Transonic Wind Tunnel Wall Interference

7.1 Introduction
A central problem in aerodynamics is predictien of vehicle flight characteristics from
wind tunnel tests of subscale models. Major factors in extrapolating the tunnel results to
free flight are Reynolds number scaling as well as wall and sting interference. Currently,
the issue of U.S. wind tunnel modernization is being addressed. A major thrust is attain-
ment of near-flight Reynolds numbers. If large models are used, wall and sting interfer-
ence are limiting factors in obtaining a tunnel flow even qualitatively resembling that of
flight. In particular, testing at transonic speeds can produce steep wave fronts that reflect
back on the model. Porous and other types of ventilated walls have been developed with
the aim of canceling these refle ions. In spite of the advances made in this technology as
well as computational simulations, much still needs to be done to understand the tradeoffs
in sizing wind tunnel models and test sections to minimize wall and sting effects while
maximizing model Reynolds numbers.

References [ 1]-13] exemplify early treatments of lifting flat plate wings in porous tunnels
at subsonic speeds. This work did not address important nonlinearities associatcd with the
transonic regime and assumed small wing dimensions compared to that of the test section.
No framework was developed for systematic improvement of the approximation, and to
our knowledge, the results were not compared with experiment. Computational treat-
ments of transonic flows are discussed in [4]-[6] which remedy some of these deficien-
cies and deal with realistic airplane shapes. The large scale (CFD) computational ap-
proach can model geometric complexity and nonlinear effects but is usua!ly expensive
and time-consuming. Although considerable progress has been made, much user inter-
vention is still required for geometric pre-processing to mate structured and even unstruc-
tured grids to the 3-D surface topology. This is an important issue for the test engineer
who needs to quickly size the model, make test plan adjustments during the test and in-
terpret the results afterwards. Combined asymptotic and computational (CAN) methods

are discussed in (7] and [8] that addJress this need.

A*.

Fig. I Schematic of confined slender airplane.
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These approaches reduce the size and computational intensity of the nonlinear problem
and provide frameworks for approximation prw,.cdures that arc capable of systematic re-
finement

As examples of the CAN approaches, [7] and [8] discuss transonic blockage interference
forrconfined slender shapes such as those shown schematically in Fig. I and lift interfer-
ence for high aspect ratio wings.

In this section, improvements of -)ur previous theories will be discussed in four major ar-
eas delineated in the contract St-tement of Work (SOW). These are:

I. Treatment of lift interference

2. Extension of large wall-height blockage interference to moderate height case

3. Porous wall effects

4. Non-circular wind tunnel test sections

7.2 Lift Interference and porous wall effects

The thrust of this activity is to develop a systematic asymptotic framework for computa-
tion of lift corrections due to the interaction of a slender model with walls. Because of the
resemblance of the asymptotic developments, to those for transonic flow, the subsonic
case was considered for convenience. As indicated later, this approach actually seemed to
provide good comparion with experiment at near-sonic speeds. The treatment was gen-
eral enough to address Item 3.

b",

UiU

Fig. 2 Schematic of slender wing.
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Initial developments under this contract are described in [9]. There, the free field and
wind tunnel problem of the incompressible flow over a flat wing of arbitrary planform in
a circular wind tunnel test section was outlined. An in-depth continuation of that intro-
ductory treatment will be summarized in what follows,. Expansions of limit process type
have been used to the study the matching process in greater detail than in the preliminary
analysis of [9]. In addition, the second order inner approximation has now been derived.

Letting 01' be the velocity potential, limits involving the semispan of the wing b and the
angle attack a have been considered. Near the wing, a limit process in which b -h 0 is
used. Referring to Fig. 2, an inner limit is defined as

U (+)abq (x,y',z +ab log 14u(xy*,zO)+

ab392 +...

where the inner limit is

a tana, A =alb,y" a y/b,z* M-z/b, fixed asa,b -O (2)

In (2), the characteristic wing chord is fixed while the semispan b and angle of attack a
tend to zero at the same rate. Near the wing, cross flow gradients dominate and these pa-
rameters give the characteristic lateral scale of the flow which is b. Equation (1) is an
inner expansion for the velocity potential 0 in terms of approximating perturbation po-
tentialsq,, ,(v = order of the approximation). It contains the "switchback" term ip., and
the indicated gauge functions in anticipation of matching.

The problems for the q, are obtained by substituting the asymptotic developments into
the exact problem for 0. For this exact problem, the equation of motion for the velocity
potential is

V2,0 = O. (3)
Bernoulli's Equation is

os+P + t,.. (4)
2 2

The equation of the body is

B= y+ax=0. (5)
"On this surface, the tangency boundary condition is

4.vB=o. (6)
Darcy's law

AP - RV, (7)

is used to model the porous walls, where,
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AP = Pressure difference across wall

R = Flow resistance constant

V = Transverse velocity.

The dominant orders in (1) solve harmonic boundary value problems in the cross plane
perpendicular to the freestream and the higher orders solve Poisson problems. In particu-
lar, substitution of the inner expansion into the exact problei-A, gives the following prob-
lems:

S¢T'PI r- 9,),..+ 9we .(.a)

qV, (x,-Ax, z*) = -I

A~' 22  01 (8b)
OP2:" (x,- Ax, z') = 0(b

A* ( I

9 2 .. (x,-Ax,z') = -4, (x.-Ax,z') (8c)

Problems (8) require fax field boundary conditions for r" zy +z " . These come

from matching.

The dominant inner approximation from (8a) provides a first estimate for the flow and
pressure field of the wing. The leading edge square root singularities dominate this flow
field which is the stagnating flow on a finite flat plate. From a Joukowski mapping to the
circle plane or the Circle Theorem, the solution of the problem (8a) is
4p, = -iRe Ila 2 -,S2)12_a la m-" c¢z" + i(y" + Ar) (9)

in which the freestream velocity has been normalized to unity through the non-
dimensionalizations in (I). This solution has the proper far field (downwash at infinity)
related to matching with outer solution.

A similar procedure gives the following for solution for 9,2 which is

q, =--Re 2 (SST a,- S. (10)

2
This satisfies the surface boundary condition in (8b).

The far field for 92 as r -) oo is also needed for the match~ng. This can be obtained from
particular solutions of the Poisson equation in (9c). This gives
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12 =--(ss')'(r'cos8)logr' +h2 (x)y*+... as r-+-•.
2

Refinements of the unconfined flow field and wall interactions come from coupling with
the far field. An outer expansion involving an 0(1) transverse length scale as b -4 0
gives a semi-infinite line doublet for this part of the flow. In particular, for an outer limit

x,y,z,A fixedasa.b-.0,

the appropriate outer expansion is

U = x + ah' (X,y, z)+... (! 1)
U

The quantity A solves the following problem:

AtA = A. +AjY + 0.

s2(x) cosO

A,(xrO) --r asr--0 (12)

where r = 1777, tan 0 = z / y and the last relation is the approximate form of Darcy's

law.

The solution of (12) can be written as
Id D(-)d r + wall correction function (13)

where the first term is a line doublet distribution of strength D(ý) that satisfies the sec-
ond relation of (12). The wall correction function is needed to satisfy Darcy's law in (12).
In (13), the Kutta condition at the effective trailing edge provides the appropriate con-
tinuation of the line doublet to downstream infinity and its convergent integral represen-
tation. Furthermore, (13) gives upstream influence not present in the inner solutions.

The inner expansion of (13) can be obtained from the r -40 expansion of its Fourier
transform. T-s gives

D(x)cosO D"(x) f2 r}L ,, O.Gr(x)•icos84my+-..as
01- 2r r 2i 2 logr-JC4 2 r-.
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where

D(x7.)r r p2~r [3(Koq + K,)(1 -q10) +q 2J1 1 K . q(x -)
my-cosOI 2h- '-2--2 D(1)d) 2 sin dq

-oeý Prfb()¢-q2Cs& d7

C 2 1rh2 o 02 (qI 0 - 11)' + q 1 , h

A = I for : I, (includcs porous and closed walls)

= -I for, = O,(free jet), (degenerate limit 03 -*0)

G(x) a - L D'(4)sgn(x - ý) log 2fx - 4d
4yr J0

s2 (x)
D(x) w- 2-a

(16)
where h is the wall height in units of the body length and the term my in (16) is the wall
interaction effect due to the imaging of the doublet in the walls. As an alternate approach
for the first term of (13), the integral can be directly expanded for r-* 0. This delicate
procedure is described in [10]. In the Fourier integral method used, the solution naturally
decomposes into a free field (no walls present part) and a wall interaction portion as indi-
cated in (19). Special limiting processes of the singular integrals were developed to han-
dle zero and infinite porosity, corresponding to solid wall and free jet cases respectively.
Equation (19) agrees with the results from (1]-[3] in the limit of vanishing chord to tunnel
radius ratio. In future work, (19) will be used to compute the camber effect associated
with non-vanishing chord. To our knowledge, this study has not been made and we be-
lieve it is an important factor entering the comparison of our results with experiment to be
discussed.

The inner and outer solutions match directly to the orders to be considered here.* This

can be shown by expressing each in terms of an intermediate variable r,. For this pur-

pose, an intermediate limit

r,, I r- fixed as b -+ 0, (17)
Thb)

is used to compare the inner and outer representations in an "overlap domain" r= O(l)
in which both expansions are mutually valid. Note in the intermediate limit

"Other applications exist where intermediate expansions is required.
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r rrir,, -> r0 ()(b) -40.

The matching process consists of writing inner and outer expansions in terms of the in-
termediate variable r,, and comparing similar terms to determine unknown elements. Car-

tying out this process, the two expansions appear as follows in intermediate variables

-ab !LL)cos+o + ab. g b +

'~ b

+ ab' -(ss')' 7 " coso(logi7r, + Iog)) +1 2 (x)cos4}+"",

~ Outer ab ----- ,0 ------ -- nlo-Io r, - 7 -cosO+_ n-E-j--j77r,,osO+...t€', 21re = 2b 4 2•

(18)

Based on (18), the following relations hold

ab2 ~ D(x.) s'(x)
2zr 2

r O(ab' log 77):
2ir

D-(x) I G"(x) (ss')" G"(x)0 (ab'i7): _ _-+M h, (x)
2zr 4 2 4 2

O(ab2l7logb): switchback term

P2, r", 4 cr*1r os 1

2 2 barZ 0¢21 =!(ss") y as r' •

Note that in (19) the cssential wall interference effect is the additive term in affecting
h,2(x) in the O(ab2rn) matching rclationship. Another viewpoint is from (8b), the solution
of which consists of a superposition of its homogenous solution (response to homogenous
equation of motion and boundary conditions) and the effects of the forcing terms in the
equation of motion and boundary conditions. The homogeneous solution is non-trivial
because of the downwash far field associated with the line doublet imaging in the porous
walls. Another interesting point is the surprising appearance of switchback terms. Thcse
normally are associated with transonic flow. They arise in this subsonic flow from loga-
rithmic elements in the expansions.

The second order inner refinement of the free field lift and pressure distribution comes
from the problem (8c) (complemented by a far field condition) for the inner potential q.

Techniques used to solve this problem involved matching considerations and cxclusion
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principles disallowing aperiodic logarithmic parts and removal of unallowed leading edge
singularities to maintain finite forces.' The inhomogeneity in the cquation of motion was
treated by a particular solution V,~ satisfying

- -= Ima- va/cT

where F is the complex conjugate of a. Other solution components are supcrposed to
satisfy the far field boundary condition involving the free field and the wall correction to
the dowriwash. Our analysis resembles that of Wang [I111 in some respects who in con-
trast to our effort did not consider wall intcrfcr1cncc vhich, is the central thrust of our
work. Problems such as (8c) are typical of the transonic case.

0.14

0.122 2%f~C~jf~ W 'b

0.12- CLj* 30 perforated welI
0.10 M :1j~f:~ correctionl f,,c~or

0.0 M_ .02. 1 f2% T12

a k, 0. 9, f i 0-% exei vn128

* M_ a 1.02, t 10%
0.08

0/

0.04- E

CL

-0.02-

-0.04-

-.0 2  .1 0 1 2 3
a degree.

Fig. 3 Comparison of lift interference theory with TsAGI experiment.

'More details will be in our paper to be presented at the Is' AIAA Theoretical Fluid Dy-
namics Meeting. June 1996, New Orleans, La.
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Integration of the pressures on the wing give the following expressions for the lift L. For
the free field,

b"tan a t:+b' log'btan a 12 + b' tana 1 . (20)

Where

fs )2 J 2p (21)

= [(pjz =(e:x I2XI+log2)- "(G- +sr -- + 2A

The dominant term for the lift e: and pressure distribution agrees with Jones' theory
given in [121.
As an experimental validation of the lift interference theory, Fig. 3 compares lift versus
angle of attack predicted by the our asy1rnptotic theory with transonic tests of a wing-body
combination at TsAGI in Moscow and reported in [9]. It is striking that the incompressi-
ble theory agrees so well with the experiment for the high transonic Mach num-
bers M = .99 and 1.02 tested. Plausibility of this finding is related to the elasticity of
slender wing theory to not-so-slender planforms as M -+ I as discussed in [ 13)-(14].
Approximations of wall interaction integrals give the porous wall corrections for wall
openness factors f = 2 and 10'7, indicated in the figure. It shows that the experimental
trend with increasing f is captured by the lift interference theory for vanishing chord to
tunnel radius ratio. However. the comparison with the data shows an increasing slope
with incidence not captured by the first order theory. Prcliminary indications are that the
free field second order effect shows a reduction in lift slope is counter to experimental
evidence. It is likely that the reverse trend is due to leading edge viscous separation and
vortex formation as well the need to account for the finite chord of the wing. A refine-
ment accomplished is an estimate of the effect of a vortex at the wing-fuselage juncture
occunring at higher angles of attack. An oil flow visualization of this phenomenon from
the Pl's Russian TsAGI experiment reported in 115] is shown in Fig 4. Results from a
preliminary model based on conical invariance of the vortex field is shown in Fig. 5. The
improvement in agreement is striking and suggestive of the importance of modeling dis-
crete vortex effects. In spite of these, the wall interaction theory shows promise of model-
ing relative trends. As in the blockage theory work for wall height of the order of the
body length to be discussed, estimation of the absolute levels can be improved independ-
ently of the interference estimations using vortex dynamic and leading edge separationj approaches such as that just mentioned.

The main point of this' effort is that it provides a natural launching pad for extension of
the theory to nonlinear transonic flow, accounting for higher approximations, thickness,
viscous interactions and finite chord to tunnel height as well as systematic higher order
refinement. With the exception of switchback terms and gauge functions, the inner prob-
lems for the transonic case are expected to resemble those associated with the incom-
pressible asymptotic theory. However, the outer expansions will solve the three-
dimensional Karman-Guderley instead of Laplace equation in the dominant approxima-
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tion, and forced vcrsions in the higher orders. However, a major si'mplification of tie
usual lifting surface (transonic small disturbance theory) numerical problem is anticipated
since the angular variation can be separated out by matching with the inner muhipole
structure.

....

-.-.-. --........ . ... -:

Fig. 4. Wing-body-juncture vortcx formation in TsAGI wind tunnel.

a '5 -. •
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Fig.5 Coipurison of vortex improved theory with experiment.

7.3 Extension of large wall-height blockage Interference to moderate wall

height case

Major thrusts of this work in this phase were

1. Validating a transonic small disturbance fnodel For 1he flow in a wind tunnel against
cxperimental data

2. Validating the equivalence rule for transonic wall interference.
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Referring to Fig. 1, the walls or pressure interface boundary where pressures are assumed
to be specified from experiment are at r = h, where h is assumed constant for conven-
ience herein (circular test section).* Defining H = 8 h, the case (OH = 0(l) was consid-
ered in the research reviewed here, in contrast to the less practical situation (ii) in (7]
where H -+ jo. As will become clear, the asymptotic solution of the Full Potential formu-
lation, for Case (i) leads to two, rather than three decks associated with (i), i.e., no wall
layer is required, the confined flow consisting only of a nearly axisymmetric "outer" re-
gion and a cross flow gradient-dominated inner core which is the near field of the body.
In an inner limit in which

r ar/, K (I M2. )/62, A ma/•/ fixed as6 -+ 0, (22)
where a is the angle of attack, J is the maximum thickness ratio of the equivalent of
body of revolution and M. is the freestream or tunnel Mach number which will corre-
spond for convenience to the flight Mach number. The inner expansion (near field) of the
slender airplane model B = r--F(x,6) = 0 is

,i,,,(x,r,O;M,,8,a) _-+(252 log6) 1 S(x)+5 '(,(r,6 ;x) +.-. (23)

U
where S, (x) is a source strength determined by matching with the outer solution. The
inner problem is

A,191 (rip1,- r 1"W , =-0 (24a)

c&tp- FF'(x) (24b)

where n denotes the normal direction to an x =const. cross sectional contour of the sur-
face B --0. Further details are in [13,17]Application of Green's theorem to (24) shows that

I 2r2A,(WqPj- log r" - +-.. = -logr +.-. asr -. , (25)

i.e., the asymmetric body appears as a line source in its far field of inten-
sity A'(x) where A(x) is the cross sectional area at the station x of the body B =0. Equa-
tion (25) determines 4 (x) in (23) as will be seen in the discussion on matching that fol-
lows.

The outer limit (with a slight change in notation from Section 2) is
7 n8r, K x (I-_ M.)/82, , A maIa fixed as 8 -0. (26)

For (26), the appropriate outer expansion is

)= x+5 2 ¢t(x,7,8 K,A)+ ... (27)

"Al lengths are in units of the body length.
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Substituting (27) into the Full Potential equation gives the Karman-Guderley (KG) equa-
tion

(K-(= ),,ý.+(O, 0 (28)

Appropriate to the confined case considered in the research, the approximate Darcy law
porous wall boundary condition for (28) is

,(x,H,9) + AA,, (x,H.6) = 0, (29)

where A is the Darcy porosity constant. If experimental pressure data is available on the
interface F = H, then

-(x,H,0) - f(x,e) (30)

Appropriate inflow and outflow conditions as well as an inner boundary conditions are
required to complete the formulation for (28) for subsonic far field. The first of these are
discussed in (7]. Gauss' theorem shows a uniform outflow is required as x - , ±- for the
solid wall, (A =0 in (29)) which is linearly proportional to the body base area.

As in the unconfined case, the inner and outer expansions can be matched to dominant
orders. However, intermediate expansions are required for the higher orders. This was
demonstrated for the unconfined case in 113]. Matching is performed in the same manner
as in Section 2 using intermediate variables. The appropriate intermediate limit is

r,. a- r fixed as 8 - .-+30 .

Under (31),

41 7r, 18
r == -6-r, 7 -=0, --m ,, -7(8) -+ 0. (32)

The inner expansion written in intermediate variables is

0m=X+ (28 log8)4(x)+V (&N{ !j2-,BAx )+ A'(x) (10og1?r, -log63)>... (33)

2 3 4

where (PI) is the portion of p, that is regular at r" " . Terms 3 and 4 arise from (25).

Term I in (33) is a switchback term that is needed for matching with the outer expansion.
In anticipation of matching, thex derivative terms are assumed small and the solution of
the remaining equation

is
A a S(x)Iog + g(x) +.. as 7 -- 0.

This implies that the outer expansion in intermediate variables is
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'I,~(~rO.t,3a + 8 2{S(x)(log ilr,, + log6) +g(X) + ...} + (34)
U

1' 2' 3'
Matching of Term 2' in (34) with Term 1+Term 4 in (33) implies that

S(x) " S(x) .- A'(x) 5
2;r

Also, matching of Term 3' in (34) with Term (2) in (33) gives

9p1R'(r*,Ox )E g(x)asr' *o

Finally, Term V' in (34) matches with Term 3 in (33). From this matching and (35), the
appropriate boundary condition to complete the formulation for (28) and (29) or (30) is

lrn P-4 =A'(x) (36)

The pressure on the body can be obtained from substitution of the inner expansion into
the exact formula obtained from the energy invariant

a q2  a2 U2
q (37)

1-l 2 Y-1 2

where a is the local speed of sound, U is the frecstream velocity and the subscript - re-
fers to freestream conditions. From (37) and isentropy, the pressure coefficient, CP is

c p. 2  -. l+ M 1-2) (38)

where P is the pressure. p is the density and q -a 141.
Substitution of (23) into (38) gives

C, A"(x) 3
lo - +lo Ir . I" }..,'.. (39)

282 2jr

for the pressure on the body, r = F(O;x), where .,p A crucial

step for our final conclusion about wall inferfcrence comes from the interpretation of (23)
and the matching between (33) and (34) and the decomposition

(, = g(x), 01 . (40)
1 2

Term I it a component determined only by the solution of ihe outer problem (28), (29) or
(30) and (36). From (36), it is influenced only by the cross sectional area and not the
cross sectional contour of the body at the streanivise station x as well as the wall
boundary conditions. By contrast, Term 2 depends solely on the inner boundary value
problem (24) and is independent of the wall boundary conditions. These statements lead
directly to the extension of our transonic area rule for wall Interference (TARWI)
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from H a* to H = 0(l), a major impact of this phase of the research. From this
generalization, more practical situations than those for H -+ can be considered in
which the model distance from the walls is of the order of its length. These are typical of
transonic testing. It should be noted that angle of attack effects are higher order for this
A = O(l)case as contrasted toA -4 - casas wherc they will interact with the near field in
the domi~iant orders through line doublet-wall-irmaging/reflection-induced downwash.

S ds 'l/tw FNoit View

Fig. 6 Wing-body testcd in TsAGI T-1 28 wind tunnel.

7.4 Validations of theoretical and computational simulations for moderate
wall height case

Experiments in TsAGIs T-128 wind tunnel in Moscow. Russia, described in (9], have
been performed to validate the theoretical work conducted under the contract. Figure6
shows one of the wing-body configurations tested. Results for pressures over the equiva-
lent body of revolution (EBR) for this wing body are shown in Figure 7 that compares the
combined asymptotic and numerical method developed in the contract with the TsAGI
experiments for the H =00I) case discussed in the previous section.

The code is quite efficient, requiring only a minute of execution time on a VAX 3100
work station and only 100 iterations to obtain the 2000 iteration fully converged solution.
Fig, 7 shows excellent agreement between the theory and experiment. To achieve this
fidelity, it was important to accurately simulate the sting model support. This element was
necessary to capture the proper recompression process to ambient levels. Additional vali-
dations discussed in [9] are that the shock position estimates from f 16] agree well with
the TsAGI measurements. Work continues on specially designed experiments to adjust

"Enunciated in [7,81
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!he level of interference by altering the wall porosity. This will provide a useful database
for comparison with the H =0(l) theory.

6

I.

r -0.5

.-. 4- o Experiment

- i - EBR

-0.2' 0 a

Cp -0.1

0, 0

0.1 00

0.2
0.3

0 .25 0.5 0.75 1
x

I.
Fig. 7 Comparison of present theory with TsAGI experiment.i

In 1995, a larger aspect ratio model was tested in the TsAGI T-128 wind tunnel program.
A comparison of the larger aspect ratio wing-body with smaller version is shown in Fig.
8. Figures 9 and 10 compare the drag rise of the smaller and larger aspect ratio wing body
WB I and WB2 respectively with their equivalent bodies EB I and EB2 for two different
wall porosities. These are expressed in terms of the wall openness asea ratio, f , whicl, is
the area of the wall perforations as a percentage of the test section cross section area.
Values of f were 2 and 10% for this study. Figures 9 and 10 are, to the Pl's knowledge,
the first experimental confirmation of the transonic area rule for wall interference
(TARWI) previously discusse., Le., if

.CDu CDI1 ,,O - CDI,. 2,

then
tCDL,= -&CD!LU (41)

where C. is the drag coefficient , subscripts WB and EBR denote the wing-body and its
equivalent body respectively. Figure 10 shows the TARWI (41) has surprising robustness,
i.e., although the aspect ratio of WB2 is considerably larger than WB2, the TARWI (41)
still holds near M. = 1. This is related to the elasticity of slender body theory to not-so-
slender shapes near sonic speeds. It is associated with the coefficient of the xderivative
terms in the KG equation (28) being proportional to M,., - I as M. -- 1, where M,.
is the local Mach number. Thus, although the cross flow gradients are no longer 0(1 6)
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but 0(1) for not-so-slender shapes such as WB2, the x derivative terms are still higher
order. Accordingly, the near field remains harmonic in cross flow planes as in the classi-
cal slender body theory. Other robustness of (41) should also noted. Although (41) is
applicable tolH = 0(l), the nominal His closer to 0.1 for the Figs. 9 and 10 cases. This
is related to the larger length body associated with inclusion of the sting in its definition
for the computational modeling. However, if a large part of the sting is at nearly ambient
conditions, H = 0(1) rather than the nominal H = o(1).

As a final comment, new effort in generalizing the experimental validations of the theory
to more realistic configurations has started with 1996 wind tunnel testing of the Tupolev
Tu-144 supersonic transport ip the TsAGI T-128 program.* One aspect of the work will
be investigation of the inlets. The model is modular in the sense that it can be tested with
inlet on and off it.

Fig. 8 Wing-body configurations tesed.

"A re-engined, refurbished version of this aircraft is being prepared for special U.S.-FSU
flight test program to start in April 1996.
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Fig. 9 Comparison of wave drag for wing-body WB 1 and its equivalent body EBR 1.
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Fig. 10 Comparison of wave drag for wing-body WB2 and its equivalent body EBR2.
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7.5 Non-circular wind tunnel sections

Many wind tunnel test sections are non-circular. Typical U.S. installations have octagonal
and rectangular test sections. The PI's testing in the T-128 wind tunnel strongly suggests
that these non-circular cross sections have only a mild influence on the axisymmetric far
field of a slender model tested at transonic Mach numbers. This observation motivated
the phase of the research to be described.

If the flow near the walls is subsonic which is the case in transonic flow with a subsonic
freestream, it is reasonable to expect rapid elliptic decay of the disturbances inward to-
ward the centerline of the wind tunnel. This contrasts to other cases such as slightly su-
personic frecstreams, near choking and supersonic bubbles of the unconfined flows pene-
trating the walls. To explore this hypothesis, the flow inside a test section that is a slight
perturbation of circular section will be treated. Figure 11 shows an example of such as
perturbation which is an octagon. For generality, the following wall shape.

R = h + eg(O) (42)
in which e << I and his a constant. For specific shapes, it is possible to get an approxi-
mate numerical order of magnitude for e which can be written as

gM. 11 d.
0se~f o.•,4(43)

h
Value, of E for square, hexagonal and octagonal test sections are given in Table 1.

Table I
Section S

square . 4 ., 14
hexagon 6 .155

octagon 8 .082

These are based on the following relations for an n -sided polygon:

g sec~e3•~ 2kr
.n k •-1 6: (k + 1) Yr k = 1,2,3,. , n , (44a)

Sscc' 4

£ = sec(!) -1. (44b)

In the first quadrant,

k -" 0,1,2,3,....,n14, 0 5 0: < /2.

Using the polar coordinates previously introduced and referring to Fig. 11, as well as the
outer limit (26) and expansion (27) as well dropping the subscript unity notation in Oi, the

equation for the perturbation potential in the outer region is

(K- + 1 + + o0. (45)
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Tunnel Walls

r"r

I Tunnel Walls

L ---- ------

SCAM9 031106

Fig. I I Schematic of model in non-circular test section.
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For convenience, a free jet boundary condition, corresponding to A - in (29) is con-
sidered. Accordingly, the exact boundary condition

Cf(x,R(8))= 0
implies

4•(x,R,0) =0.
Since R is independent of x,

O(x, R,8) = constant. (46)
The constant can be assumed to be zero without loss of generality. Corresponding to (42),,
the perturbation potential 0 can be decomposed into the axially symmetric outer part cor-
responding to e =0 and the secondary perturbation associated with the deviation of the
walls from a circular cross section. Thus,

0(X, 7,0)= 0. (x, 7) + F.l (x, 7,0)+... (47)

Substituting into (45) gives

- + +.., + o,

which implies for the respective orders

=0 (48b)
O(I):{K- (r + I Y )~,+(?~) 4b

Equation (48b) is the so-called variational transonic small disturbance equation consid-
ered in [7,8] in connection with other applications.

Substituting (47) into the boundary conditions near the tunnel centerline gives
A'(x) (49a)lie-00 = - (4a

lim 70- 0.

where A(x) is the cross sectional area. (49b)
On the (non-circular) cylindrical walls,

F.11 = H + eg((), (50)
a Taylor series expansion for the free jet condition (46) givesO(x,H + e•+. ..,0): =4(x, H + eg+...)+ €,(x, H + e g+...,i9)+...

= 00 (x, H) + e(go, (x, H) + 0 (x, H)+...)+...

Equating like orders gives
O(1): o(x, H) = 0 (51 a)
o(8):0, ,H)= -g(8) 0o,(x,H). (5 1b)
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A Fourier decomposition to reduce the three-dimensional Transonic Small Disturbance
(TSD) problem "Pl".(48b), (49b) and (51b) for a wall pcrturbation from cylindrical to
one in two-dimensions is

A =i .-- csn9 (52)

This decomposition exploits the fact that the only way that asymmetry is introduced into
the perturbation problem is through the multiplicative factor g(O) in (5 lb). Note also that
the assumption of small perturbations allows the boundary conditions to be transferred
from the perturbed surface to the simpler cylindrical test section's. This is essential to the
reducticn of the dimensionality of the problem. Equation (52) is a factorization that re-
duces the problem PI to the form

K(yr+l1)40 0.,10, (7 +401,00, + ) ,iL (50 (a)

* limr•ar =0 (51b)
7_40

k. (x,H) -6 ((520)

"A,, gJ g(e)cosnedO, (n > 0) (52d)

A a -W gg(0) cos nhdO (52e)

By (40) and the italicized paragraph following it, the function g(x)which controls the
drag and pressure distribution is the only part of the dominant near field that interacts
with the dominant outer solution. Since their is no 6 dependence in this portion, the only
solution of interest of (51 a) is that corresponding to n=0. Thus the effect of the higher
harmonics A, for n > 0 are negligible to this order. Effectively, the angular dependence is
'.averaged out". This is another kind of area rule for the effect of slightly asymmetric
wall sections.

To quantify-this effect, the mild transonic case corresponding to large K in (51a) was
considered. To simplify the analysis, the problem is reduced to a harmonic
(incompressible) one by scaling out K by an x transformation and noting that the second
and third terms in (5 Ia) are negligible in this approximation. The x transformation is

S= x / 4 (53)

This is equivalent toaanother procedure that relates the KG to the Prandtl-Glauert (PG)
equation from the definition of K in (26) and the fact that the appropriate outer variable
for subsonic flow is rrather than 7 in the KG regime. This gives the reduced PG equa-
tion

014~ XX + r,, n 1 = 0. (54)
where with some redundancy in notation used in a previous section, the transformation
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X=xi/f
in which

is used.
The boundary conditions (51b) and (52c) are unaffected by the large Kapproximation.
These relations and (54) constitutes the problem Pl' which can be solved by the expo-
nential Fourier transform pair

e-=,d (55a)*

L - -e'Tdk (55b)

The subsidiary equation or Fourier transform of (54) is
d 2 d4' (- 2 Vdr'+_ _ k 0. (56a)

dr r dr ,r-2

The transformed boundary conditions are
limro--O (56b)
T.(h; k)d= A, d0 (56c)

Equations (56) lead to the solution

1, (kr) ~dT, eiXdk. (57),

where I. denotes the modified Bessel function of the second kind of n'*order. Equation
(57) can be further simplified from the solution for the transform of a similar boundary
value problem to P1' for 0.. This gives

ddr ; Ko(kh)lj(tdh)+ Kj(kh)lO(Lh) • "
,., o( )j =(58)

where the Wronskian relation is used to get the third member of the equality. The differ-
ence of the non-circular and circular cross section wind tunnel pressures on a body is
given by the formula

AC, a c,J, -cj,. 0 = -2eo2 (g'(x)-go(x)) -20 10 ,(xO), (59)
where the g, (i = 0,1) are the 0(1) terms of the inner (r -- 0) expansion of the outer so-
lutions for j0ý and 00 respectively, and 6 is the maximum thicknesi ratio of the body.

The • 1.(xO) for n * 0 do not contribute in (59) since

10o(0) = .

I, (0)=0, n >0.

Finally, from the Convolution Theorem, (57) and (58), the change in the body pressures
due to wall asymmety A. is
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S& AjA'(4,)d4 sink(X-), (60)
/3~rh l0(kh)

To illustrate (60), a parabolic arc body of revolution inside a square cross section tunnel
is ca.,sidered. For this case

r, (x) = &(1 - x), 0 _- x 1,
where r. is the body radius. Accordingly,

A =.,m ,t52(x2 -2x' +.') (61)

and

31r'
2_ _ 8 I 'TAO log - 1+- i=l.1. (62)

tans I2
8' J

Figure 12 shows the effect of increasing Mach number on the normalized correction of
the pressures from a circular to a square test section, ACr, where,

ACP,Ac & , (63)

h &

when h =1 for a parabolic arc body, i.e., the tunnel average radius is equal to the body
length. Note that although the body is in the interval 0! x : 1, wall asymmetry influ-
ences the flow considerably upstream of the body nose. Moreover, the largest effects ap-
pear at the nose and tail of the body and the correction increases with Mach number as
expected. Another observation is the rapid upstream and downstream decay of the effect.
This is consistent with the flow ellipticity. Lastly and most important is the smallness of
the effect which is in sharp contrast with the results for h =.5 which shows a dramatic
ten-fold increase with merely halving the wall height. This effect is brought out in Figs.
13 and 14 for M._=0 and .7 respectively. In accord with expectations, Fig. 15 shows that
compressibility increases the change in pressure associated with wall asymmetry.

7.6 Summary, conclusions and recommendations

Development under the contract effort and related work of a number of unique and useful
tools to the wind tunncl test engineer has been described in the previous sections. These
are:
1. Extension of the area rule for blockage interference to wall heights of the order of the

body length.
2. A systematic asymptotic theory for lift interference.
3. Simplified corrections for asymmetric deviations of circular wind tunnel sections.
4. Emerging database for transonic wall interference theories from Russian tests. Items I

and 2 apply to porous wind tunnels. Item 3 can be readily extended to such sections.
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Pressure Correction for Square Walls, h= 10.10 * * i * I * i * "
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Fig. 12 Pressure corrections from circular to square test sections, parabolic
body, h= 1.

Pressure Correction for Square Walls, h •0.5
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Fig. 13 Pressure corrections fr~om circular to square test sections, parabolic
body, h =5.
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Pressure Correction for Square Walls, M = 0
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Fig. 14 Pressure corrections from circular to square test sections, parabolic
body, effect of h for M_ =0.

Pressure Correction for Square Walls, M, =0.7
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Fig. 15 Pressure corrections from circular to square test sections, parabolic
body, effect of h for M_. 0.7.
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The ultimate impact of this work is to

* Reduce computational intensity of transonic wall interference estimation.
* Help optimize mode! sizing to maximize test Reynolds number while minimizing

wall interference.
* Provide a quick means of extrapolating ground tests to free flight.

To enhance the utility of these tools the following further effort is recommended:

e Apply Items I and 2 to corrections to drag polars
* Extend Item 2 to transonic flow, moderate chords, and thickness
e Extend Item 3 to the moderate K case.

- Strong evidence exists that the n =0 solution of (51a) is appropriate to the strongly
nonlinear transonic case. The argument is similar to that following (59).

- It is envisioned that 8'(x) "spiky" behavior of the variational solution near shocks
will be the principal modification of the solutions previously discussed for the
high subsonic large K case.

- Validation of the subsonic solutions against the exact eigenfunction and elliptic
function Green's functions should be performed
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8. Significance, Impacts of Research, Recommendations and Future
Work

Various aspects of hypersonic stability and transition as well transonic wall interference
problems have been addressed in the effort previously described. Major observations are:

1. Solutions exhibiting a special wavegulde behavior not previously studied reveal
disturbance amplification and transition mechanisms in which acoustic disturbances
reflect against the edge of the boundary layer as if it were a solid wall. Similar
phenomena occur in the region between the edge of the shock and the boundary layer
sonic line. This work is an outgrowth of the previous effort of the Principal and Co-
Investigators concerning nonparallel and shock effects in hypersonic boundary layers
as well as waveguide energy trapping that are not modeled by current state-of-the-
art stability or transition prediction codes. These mechanisms -cmpete with
conventional processes such as amplification of Tollmein Schlichting waves and
crossflow instabilities as paths to transition. Our identification of this physics should
be useful to designers and engineers. They also will be helpful in pre and post
processing of direct-simulations and interpretation of such solutions. It is
recommended that the waveguide solutions be extended to three-dimensional flows
and that unit experimcnts be performed to validate the results of our theoretical
analyses such as those that have been initiated by Maslov and his IPTAM group in
Novosibirsk.

2. We have developed an unsteady Newtonian shock layer theory to treat aeroelastic
and unsteady aerodynamic effects as well as finite amplitude hypersonic stability.
From this model we have discovered inflectional instabilities that can be exploited to
enhance scramnjet combustor burning processes.

3. The initial boundary value problem of hypersonic three-dimensional unsteady
stability has been considered within an asymptotic framework for the first time
to our knowledge. A major contribution is the response of a point vibrator. We
recommend that comparable experiments be performed using the iPTAM spark
discharge technique. Our work contrasts with previous two-dimensional analyses
such as (Nciland 1970, Brown and Stewartson 1975) for the viscous steady case or
(Malmuth 1993, Blackaby et al., 1993) for unsteady inviscid flow. Perturbations
within the framework of an initial boundary-value problem instead of the
conventional eigenproblem provide important insight Into the space-time evolution of
instabilities and receptivity. A significant impact is that it reveals other instability
paths besides Tollmein-Schlichting, cross-flow, bypass types and those mentioned in
Iteml. The main feature is global interaction between shock and boundary layers as
well as the role of strong wall cooling in such interactions. Additionally, we have
shed further light on the role of three-dimensionality in connection with upstream
influence in hypersonic strong interactions since the (Neiland 1970, Brown and
Stewartson 1975) studies. With this new knowledge, it is possible to dilineate regions
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of influence from thre-dimensional perturbation sources. For steady and low
frequency fluctuations, the mcst intensive influcnce appears in the downstream wake
within the downstream Mach cone. At high frequencies, effects are concentrated on
the source axis.

This theory gives improved basic understanding of the interaction of separstion,
stability and transition. The practical implication for hypersonic vehicle design is the(
shock interference heating induced by different devices within the boundary layer tnd
strong separation can be reduced by techniques suggested by our triple-deck modeh.
Moreover, instabilities and other unsteady effects can be exploited to enhance mfixing
for scramjet propulsion such as with vibrating elements with tailored or maximized
receptivity. In addition, our analyses could with further development provide
engineers and designers manufacturing and flow quality tolerances for surface
roughness, such as near leading edges.

We recommend that increased understanding of disturbance propagation from this
phase of the work be used to improve computational schemes. They could suggest
stable and fast running algorithms for hypersonic interactive flows with strong
ellipticity such as shock-boundary layer interactions, and even separated "self-
interaction" flows behind a body flap or spoiler. Other recommended generalizations
that appear within our grasp are more complex flows involving chemical reactions
and radiation.

5. Our asymptotic formulations give basic similitudes that we have applied to collapse
hypersonic cone transition data to universal curves which is the basis of fast
preliminary design-oriented aerodynamic and heat transfer prediction methods. We
recommend that our procedure be extended to handle bluntness. This is a major gap in
the design of reusable launch vehicles such as the X-33.

6. From a new stability analysis with application of a Darcy law boundary condition, we
have obtained strong evidence that absorbing walls such as thoqe associated with
thermal protection systems (TPS) can quench second-mode inviscid instabilities
within hypersonic boundary layers. We recommend that the approach be generalized
to viscous disturbances. Ground and flight experimental validations of the benefits
should he performed so that a practical system can be developed.

7. At transonic speeds, our transonic area rule for wall interference (TARWI) was
extended from cases where the wall height parameter in units of the model length
h = o(l) to h = 0(l). We have performed experiments in Russia in the TsAGI T- 128
wind tunnel that validate this rule. It reduces the problem for transonic blockage
interference from three to a two-dimensions. We have also applied matched
asymptotics to provide a consistent approximation scheme to estimate porous wall lift
interference correction.s. This theory has been refined in our effort to account for the
influence of concentrated wing-body juncture vortices that give nonlinearitics in the
variation of lift with incidence. A recommended refinement is to generalize the
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approximations in the same fashion as those for blockage, i.e., the lift interference

theory assumed that h = o(1). Extension to h = 0(1) will give a camber effect

associated with the variable tunnel induced upwash field along the model length. An

immediate output of our wall interference model is that it can be used to extrapolate

polars from the wind tunnel to free flight or another facility. The TARWI allows this

estimation to be made without the need for a large scale CFD process involving

significant gridding pre-processing. Instead, only a desktop computation is required to

obtain the nonlinear blockage effect. This will help optimize model sizing to
maximize test Re~ynoldLs number while minimizing wall interference. further

validations and extensions of the theory are planned such as OUT imminent tests of a

4% Tupolev supersonic transport Tu-144 model in the TsAGI T-128 wind tunnel in

the near future. A three view of this configuration and the location of the pressure taps

are shown in Figs. I and 2.

S0 '-'.... -•0....a ...... . _

Fig. I Tu-144 three-view.
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Fig. 2 Tu- 144 4% model.
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